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22 Problem list: Closures, continuity and limits

22.1 Neighborhoods

1. (Neighborhoods and neighborhood filters) Let (X, T ) be a topological space. Let x 2 X. A
neighborhood of x is a subset N of X such that

there exists U 2 T such that x 2 U and U ✓ N .

The neighborhood filter of x is

N (x) = {neighborhoods N of x}.

Show that the collections N (x), for x 2 X, satisfy

(a) If A ✓ X and there exists N 2 N (x) such that A ◆ N then A 2 N (x),
(b) If ` 2 Z>0 and N1, N2, . . . , N` 2 N (x) then N1 \N2 \ · · · \N` 2 N (x),
(c) If N 2 N (x) then x 2 N ,
(d) If N 2 N (x) then there exists W 2 N (x) such that if y 2 W then N 2 N (y).

2. (Determining a topological space from neighborhoods) Let X be a set with a collection N (x) of
subsets of X for each x 2 X, which satisfy

(a) If x 2 X then X 2 N (x),
(b) If A ✓ X and there exists N 2 N (x) such that A ◆ N then A 2 N (x),
(c) If ` 2 Z>0 and N1, N2, . . . , N` 2 N (x) then N1 \N2 \ · · · \N` 2 N (x),
(d) If N 2 N (x) then x 2 N ,
(e) If N 2 N (x) then there exists W 2 N (x) such that if y 2 W then N 2 N (y).

Let
T = {A ✓ X | if x 2 A then A 2 N (x)}.

Show that

(a) Show that T is a topology on X.
(b) Show that the N (x), for x 2 X, are the neighborhood filters for the topology T .
(c) Show that T is unique topology on X such that N (x) for x 2 X are the neighborhood

filters for T .

3. (neighborhood filters of the uniform space topology) Let (X,X ) be a uniform space. Show that
the uniform space topology on X is the unique topology such that

if x 2 X then N (x) = {BV (x) | V 2 X} is the neighborhood filter of x.

4. (union generating set of a topology) Let (X, T ) be a topological space.

A union generating set, or base, of T is a collection B of subsets of X such that

T = {unions of sets in B}.

Show that B is a base of the topology T if and only if B satisfies
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(a) (intersection covering) If B1, B2 2 B and x 2 B1 \B2 then

there exists B 2 B such that x 2 B and B ✓ B1 \B2.

(b) (cover)
[

B2B
B = X.

5. (inclusion generating set of the neighborhood filter) Let (X, T ) be a topological space. Let
x 2 X and let N (x) be the neighborhood filter of x. An inclusion generating set for N (x), or
fundamental system of neighborhoods of x is a set B(x) of neighborhoods of x such that

N (x) = {N ✓ X | there exists B 2 B(x) such that N ◆ B}.

Show that B is a union generating set of the topology T if and only if B satisfies

if x 2 X then B(x) = {B 2 B | x 2 B}

is an inclusion generating set of N (x).

6. (The metric space topology) Let (X, d) be a metric space. Show that

B = {B✏(x) | ✏ 2 R>0, x 2 X}

is a base of the metric space topology on X.

7. (The product topology) Let (X, T ) and (Y,U) be topological spaces. Show that

B = {U ⇥ V | U 2 T and V 2 U}

is a base of the product topology on X.

22.2 Continuous and uniformly continuous functions

1. (the epsilon-delta version of continuity) Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y

be a function. Show that f : X ! Y is continuous if and only if f satisfies

if ✏ 2 R>0 and x 2 X then there exists � 2 R>0 such that
if y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.

2. (the epsilon-delta version of uniform continuity) Let (X, d) and (Y, ⇢) be metric spaces and let
f : X ! Y be a function. Show that f : X ! Y is uniformly continuous if and only if f satisfies

if ✏ 2 R>0 then there exists � 2 R>0 such that
if x, y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.
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3. (Uniformly continuous functions are continuous) Let (X,X ) and (Y,Y) be uniform spaces and
let f : X ! Y be a uniformly continuous function. Show that f : X ! Y is continuous (with
respect to the uniform space topology on X and Y ).

4. (continuous functions are not uniformly necessarily continuous) Let X = R with metric given
by d(x, y) = |x� y|.

(a) Show the function g : R ! R given by

g(x) =
1

1 + x2
is uniformly continuous.

(b) Show the function g : R ! R given by

g(x) =
x

1 + x2
is uniformly continuous.

GRAPH THIS FUNCTION.
(c) Show that the function f : R ! R given by f(x) = x

2 is continuous but not uniformly
continuous.

5. (continuous is the same as continuous at each point) Let X and Y be topological spaces and let
f : X ! Y be a function. Show that f is continuous if and only if

f satisfies: if a 2 X then f is continuous at a.
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6. (composition of continuous functions is continuous) Let f : X ! Y and g : Y ! Z be continuous
functions. Show that g � f is continuous.

7. (composition of uniformly continuous functions is uniformly continuous) Let f : X ! Y and
g : Y ! Z be uniformly continuous functions. Show that g � f is uniformly continuous.

22.3 Sequences of functions

1. (sequences of functions) Let (X, d) and (C, ⇢) be metric spaces. Let

F = {functions f : X ! C} and define d1 : F ⇥ F ! R�0 [ {1} by

d1(f, g) = sup{⇢(f(x), g(x)) | x 2 X}.

(Warning d1 is not quite a metric since its target is not R�0.) Let

(f1, f2, . . . ) be a sequence in F and let f : X ! C

be a function.

The sequence (f1, f2, . . .) in F converges pointwise to f if the sequence (f1, f2, . . .) satisfies

if x 2 X and ✏ 2 R>0 then there exists n 2 Z>0 such that
if n 2 Z�N then d(fn(x), f(x)) < ✏.

The sequence (f1, f2, . . .) in F converges uniformly to f if the sequence (f1, f2, . . .) satisfies

if ✏ 2 R>0 then there exists n 2 Z>0 such that
if x 2 X and n 2 Z�N then d(fn(x), f(x)) < ✏.

(a) Show that (f1, f2, . . .) converges pointwise to f if and only if (f1, f2, . . .) satisfies

if x 2 X then lim
n!1

d(fn(x), f(x)) = 0.

(b) Show that (f1, f2, . . .) converges uniformly to f if and only if (f1, f2, . . .) satisfies

lim
n!1

d1(fn, f) = 0.

2. (uniform convergence implies pointwise convergence) Let (X, d) and (C, ⇢) be metric spaces. Let

F = {functions f : X ! C} and define d1 : F ⇥ F ! R�0 [ {1} by

d1(f, g) = sup{⇢(f(x), g(x)) | x 2 X}.

(Warning d1 is not quite a metric since its target is not R�0.) Let

(f1, f2, . . . ) be a sequence in F and let f : X ! C

be a function.
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The sequence (f1, f2, . . .) in F converges pointwise to f if the sequence (f1, f2, . . .) satisfies

if x 2 X then lim
n!1

d(fn(x), f(x)) = 0.

The sequence (f1, f2, . . .) in F converges uniformly to f if the sequence (f1, f2, . . .) satisfies

lim
n!1

d1(fn, f) = 0.

Show that if (f1, f2, . . .) converges uniformly to f then (f1, f2, . . .) converges pointwise to f .

3. (pointwise convergence does not imply uniform convergence) Let (X, d) and (C, ⇢) be metric
spaces. Let

F = {functions f : X ! C}, (f1, f2, . . . ) a sequence in F

and let f : X ! C be a function.

(a) Show that if (f1, f2, . . . ) converges uniformly to f then (f1, f2, . . .) converges pointwise to
f .

(b) Let X = C = R[0,1] = {x 2 R | 0  x  1} with metric given by d(x, y) = ⇢(x, y) = |x� y|.
For n 2 Z>0 let

fn : R[0,1] ! R[0,1]

x 7! x
n

and let f : R[0,1] ! R[0,1]

be given by

f(x) =

(
0, if 0  x < 1,

1, if x = 1.

Show that (f1, f2, . . .) converges pointwise to f but does not converge uniformly to f .

GRAPH f1, f2, f3, f4 AND f

4. (uniformly convergent sequences of continuous functions have continuous limits) Let (X, d) and
(C, ⇢) be metric spaces. Let

F = {functions f : X ! C} and define d1 : F ⇥ F ! R�0 [ {1} by

d1(f, g) = sup{⇢(f(x), g(x)) | x 2 X}.

(Warning d1 is not quite a metric since its target is not R�0.) Let

(f1, f2, . . . ) be a sequence in F and let f : X ! C

be a function.

The sequence (f1, f2, . . .) in F converges uniformly to f if the sequence (f1, f2, . . .) satisfies

lim
n!1

d1(fn, f) = 0.

Show that if f1, f2, . . . are all continuous and (f1, f2, . . .) converges uniformly to f then f is
continuous.
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5. (the pointwise limit of continuous functions is not necessarily continuous) Let (X, d) and (C, ⇢)
be metric spaces. Let

F = {functions f : X ! C}, (f1, f2, . . . ) a sequence in F ,

and let f : X ! C be a function.

The sequence (f1, f2, . . .) in F converges pointwise to f if the sequence (f1, f2, . . .) satisfies

if x 2 X then lim
n!1

d(fn(x), f(x)) = 0.

Show that if f1, f2, . . . are all continuous and (f1, f2, . . .) converges pointwise to f then f is not
necessarily continuous.

22.4 norms and metrics are continuous

1. (coordinate functions of a metric are continuous) Let R�0 have the metric given by d(x, y) =
|x� y|. Let X be a set and let d : X ⇥X ! R�0 be a metric on X. Let x 2 X. Show that the
function

dx : X ! R�0, given by dx(y) = d(x, y), is continuous.

2. (a metric is continuous) Let R�0 have the metric given by d(x, y) = |x� y|. Let X be a set and
let d : X ⇥X ! R�0 be a metric on X. Using the metric space topology on X and the product
topology on X ⇥X show that

d : X ⇥X ! R�0, is continuous.

3. (a norm is continuous) Let R�0 have the metric given by d(x, y) = |x � y|. Let (V, k k) be a
normed vector space. Using the metric on V given by d(x, y) = kx � yk and the metric space
topology show that

k k : V ! R�0, is continuous.

22.5 The Cantor set

1. (The Cantor set) Let A = [0, 1] = {x 2 R | 0  x  1} and remove the middle third of A to get

A1 = [0, 13 ] [ [23 , 1]. DRAW A PICTURE OF A1

Now remove the middle third of each of the 2 components of A1 to get

A2 = [1, 19 ] [ [29 ,
1
3 ] [ [23 ,

7
9 ] [ [89 , 1]. DRAW A PICTURE OF A2

Then remove the middle third of each of the 4 components of A2 to get

A3 = [1, 1
27 ] [ [ 227 ,

1
9 ] [ [29 ,

7
27 ] [ [ 827 ,

1
3 ] [ [23 ,

19
27 ] [ [2027 ,

7
9 ] [ [89 ,

25
27 ] [ [2627 , 1].

DRAW A PICTURE OF A3
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The Cantor set C is the subset of [0, 1] obtained by continuing this process,

C =
�
(13 ,

2
3) [ (19 ,

2
9) [ (79 ,

8
9) [ ( 1

27 ,
2
27) [ ( 7

27 ,
8
27) [ (1927 ,

20
27) [ (2527 ,

26
27) [ · · ·

�
c
,

where the complement is taken in [0, 1]. (See [Bou, Top. Ch. IV §2 no. 5].)

Show that

(a) C is a closed subset of [0, 1].
(b) C is a nowhere dense subset of [0, 1].
(c) C is compact.
(d) C is totally disconnected.
(e) C has Lebesgue measure 0.

(f) C =
n
a1
�
1
3

�
+ a2

�
1
3

�2
+ · · · | a1, a2, . . . 2 {0, 2}

o
.

(f) Card(C) = Card(R).

22.6 Closed sets, closures, interiors and boundaries

1. (closed is not the same as not open) Let X = R, Y = R(0,1) = {x 2 R | 0 < x < 1} and
Z = R[0,1] = {x 2 R | 0  x  1} all with metric d(x, y) = |x� y|.

(a) Show that (0, 1] is not open in X and not closed in X.
(b) Show that (0, 1) is open in X and not closed in X.
(c) Show that [0, 1] is closed in X and not open in X.
(d) Show that R is open in X and closed in X.
(e) Show that (0, 1) is closed in Y and not closed in X.
(f) Show that [0, 1] is open in Z and not open in X.
(g) Show that R is closed and open in R.
(h) Show that R is closed and not open in R2.
(j) Show that the Cantor set is closed in [0, 1] = {x 2 R | 0  x  1}.

2. (boundaries, dense sets and nowhere dense sets) Let (X, T ) be a topological space. Let E ✓ X.

The boundary of E is @E = E \ Ec.
The set E is dense in X if E = X.
The set E is nowhere dense in X if (E)� = ;.

Show that

(a) Q is dense in R and Q� = ;.
(b) (0, 1] is dense in [0, 1].
(c) The boundary of Q in R is R.
(d) The boundary of (0, 1] in R is {0, 1}. DRAW A PICTURE of (0, 1] and {0, 1}.
(e) Z>0 and Z are nowhere dense in R.
(f) R is nowhere dense in R2.
(g) The Cantor set is nowhere dense in [0, 1].
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3. (closure of the open ball of radius 1 is not always distance  1) Let (X, d) be a metric space.
The ball of radius ✏ centered at x is

B✏(x) = {y 2 X | d(y, x) < ✏}.

For a subset A ✓ X let A be the closure of A in X, in the metric space topology.

(a) Show that if X = Z with metric given by d(x, y) = |x� y| then

B1(0) 6= {y 2 X | d(x, y)  1}.

(b) Show that if X = R with metric given by d(x, y) = |x� y| then

B1(0) = {y 2 X | d(x, y)  1}.

(c) Let X = Rn with norm given by kxk =
p

x
2
1 + · · ·+ x2n for x = (x1, x2, . . . , xn) and with

metric given by d(x, y) = kx� yk then

B1(0) = {y 2 X | d(x, y)  1}.

4. (Closed sets in X) Let (X, T ) be a topological space. A closed set in X is a subset C of X such
that the complement of C is a open set in X, i.e.

C
c = {x 2 X | x 62 C} is an open set in X.

Show that C = {C ✓ X | C is a closed set} satisfies

(a) ; 2 C and X 2 C,
(b) If S ✓ C then

�T
C2S C

�
2 C,

(c) If ` 2 Z>0 and C1, C2, . . . , C` 2 C then C1 [ C2 [ · · ·C` 2 C.

5. (Determining a topological space from closed sets) Let X be a set and let C be a collection of
subsets of X which satisfies

(a) ; 2 C and X 2 C,
(b) If S ✓ C then

�T
C2S C

�
2 C,

(c) If ` 2 Z>0 and C1, C2, . . . , C` 2 C then C1 [ C2 [ · · ·C` 2 C.

Let
T = {U ✓ X | U

c
2 C}.

Show that T is a topology on X.

6. (Interiors) Let (X, T ) be a topological space and let E ✓ X. The interior of E is the subset E�

of X such that

(a) E
� is open and E

�
✓ E,

(b) If U is open and U ✓ E then U ✓ E
�.

Show that E� exists and is unique.
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7. (Interiors and interior points) Let (X, T ) be a topological space and let E ✓ X. The interior of
E is the subset E� of X such that

(a) E
� is open and E

�
✓ E,

(b) If U is open and U ✓ E then U ✓ E
�.

An interior point of E is a element x 2 X such that there exists a neighborhood N of x such
that N ✓ E.

Show that the interior of E is the set of interior points of E.

8. (Closures) Let (X, T ) be a topological space and let E ✓ X. The closure of E is the subset E
of X such that

(a) E is closed and E ✓ E,
(b) If C is closed and E ✓ C then E ✓ C.

Show that E exists and is unique.

9. (Interiors, closures and complements) Let (X, T ) be a topological space and let E ✓ X.

(a) Show that Ec = (E�)c, by using the definition of closure.
(b) Show that (Ec)� = (E)c, by taking complements and using (a).

10. (Closures and close points) Let (X, T ) be a topological space and let E ✓ X. A close point to
E is an element x 2 X such that if N is a neighborhood of x then N \ E 6= ;.

(a) Let C be the set of close points to E and show that Cc = (Ec)�.
(b) Show that the closure of E is the set of close points of E.

22.7 Dense and nowhere dense sets

1. (boundaries, dense sets and nowhere dense sets) Let (X, T ) be a topological space. Let E ✓ X.

The boundary of E is @E = E \ Ec.
The set E is dense in X if E = X.
The set E is nowhere dense in X if (E)� = ;.

Show that

(a) Q is dense in R and Q� = ;.
(b) (0, 1] is dense in [0, 1].
(c) The boundary of Q in R is R.
(d) The boundary of (0, 1] in R is {0, 1}. PICTURE
(e) Z>0 and Z are nowhere dense in R.
(f) R is nowhere dense in R2.
(g) The Cantor set is nowhere dense in [0, 1].

250



MAST30026 Resources, Arun Ram, July 24, 2022

2. (intersection of two open dense sets is open and dense) Let (X, d) be a metric space and let
U ✓ X and V ✓ X. Show that if U and V are open and dense in X then U \ V is open and
dense in X.

3. (intersection of two dense sets is not necessarily dense) Let X = R with the usual metric and
let U = Q and V = Qc. Show that U and V are dense in Q and U \ V = ;.

4. (a sequence of open dense sets with empty intersection) Let X = Q with the usual metric and
let Q = {q1, q2, q3, . . .} be an enumeration of Q. For n 2 Z>0 let Qn = Q� {qn}.

(a) Show that if n 2 Z>0 then Qn is open and dense in Q.

(b) Show that
\

n2Z>0

Qn = ;.

5. (Baire category theorem, open dense version) Let (X, d) be a complete metric space and let

U1, U2, U3, . . . be a sequence of open and dense subsets of X. Show that
\

n2Z>0

Un is dense in X.

6. (Baire category theorem, nowhere dense version) Let (X, d) be a complete metric space and

let F1, F2, F3, . . . be a sequence of nowhere dense subsets of X. Show that
[

n2Z>0

Fn has empty

interior.

7. (Uniform boundedness) Let (X, d) be a complete metric space and let f1, f2, f3, . . . be a sequence
of

continuous functions fn : X ! R, for n 2 Z>0.

Assume that
if x 2 X then {f1(x), f2(x), . . .} is bounded in X.

Show that there exists an open set U ✓ X and M 2 R>0 such that

if x 2 U and n 2 Z>0 then |fn(x)|  M .

8. Show that R, with the standard topology, cannot be written as a countable union of nowhere
dense sets.

9. Let X be a complete normed vector space over R. A sphere in X is a set

S(a, r) = {x 2 X : d(x, a) = kx� ak = r}

where a 2 X and r > 0.

(a) Show that each sphere in X is nowhere dense.
(b) Show that there is no sequence of spheres {Sn} in X whose union is X.
(c) Give a geometric interpretation of the result in (b) when X = R2 with the Euclidean norm.
(d) Show that the result of (b) does not hold in every complete metric space X.
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22.8 Connected and path connected sets

1. (continuous images of connected sets are connected and continuous images of compact sets are
compact) Let (X, T ) be a topological space and let E ✓ X. The set E is connected if there do
not exist open sets A and B in X (A,B 2 T ) with

A \ E 6= ; and B \ E 6= ; and A [B ◆ E and (A \B) \ E = ;.

The set E is compact if E satisfies

if S ✓ T and E ✓

 
[

U2S
U

!
then there exists

` 2 Z>0 and U1, U2, . . . , U` 2 S such that E ✓ U1 [ U2 [ · · · [ U`.

Let f : X ! Y be a continuous function and let E ✓ X. Show that

(a) If E is connected then f(E) is connected,
(b) If E is compact then f(E) is compact.

2. (characterizing connectedness via the subspace topology) Let (X, T ) be a topological space. A
connected set is a subset E ✓ X such that there do not exist open sets A and B in X (A,B 2 T )
with

A \ E 6= ; and B \ E 6= ; and A [B ◆ E and (A \B) \ E = ;.

Let TE be the subspace topology on E. Show that E is a connected set if and only if there do
not exist open sets U and V in E (U, V 2 TE) with

U 6= ; and V 6= ; and U [ V = E and U \ V = ;.

3. (closures of connected sets are connected) Let (X, T ) be a topological space and let A ✓ X be
connected. Show that A is connected.

4. (connected subsets of R are intervals) Let A ✓ R, where the metric on R is given by d(x, y) =
|x� y|. Show that

A is connected if and only if A is an interval,

i.e. A is connected if and only if there exist a, b 2 R[{1,�1} such that A = (a, b) or A = [a, b)
or A = (a, b] or A = [a, b].

5. (connected components of a topological space) Let (X, T ) be a topological space. Define a
relation on X by

x ⇠ y if there exists a connected set E ✓ X such that x 2 E and y 2 E.

Show that ⇠ is an equivalence relation onX. The connected components of X are the equivalence
classes with respect to the relation ⇠. Show that the connected component containing x is the
set

Cx =
[

E✓X connected
x2E

E.

252



MAST30026 Resources, Arun Ram, July 24, 2022

6. (the connected components of Q) Let X = Q with the metric given by d(x, y) = |x � y|. Show
that the connected components of Q are the one point sets {x}, x 2 Q.

7. (path connected implies connected) Let [0, 1] = {a 2 R | 0  a  1} with metric given by
d(a1, a2) = |a1 � a2| and the metric space topology. Let (X, T ) be a topological space and let
E ✓ X. The set E is path connected if E satisfies

if x, y 2 E then there exists a continuous function
f : [0, 1] ! E with f(0) = x and f(1) = y.

Show that if E is path connected then E is connected.

8. (connected does not imply path connected) Let f : R ! R be the function given by

f(x) =

(
0, if x = 0,

sin
�
1
x

�
, if x 6= 0,

and let
� = {(x, f(x)) 2 R�0 ⇥ R | x 2 R�0} be the graph of f .

Show that � ✓ R⇥ R is connected but not path connected.

9. (continuous surjective functions f : X ! {0, 1}) Let (X, T ) be a topological space and let {0, 1}
have the discrete topology. Show that X is connected if and only if there does not exist a
continuous surjective function f : X ! {0, 1}.

10. (totally disconnected sets) A topological space (X, T ) is totally disconnected if the connected
components of X are the sets {x}, for x 2 X.

(a) Show that Q with the standard topology is totally disconnected.
(b) Show that Qp with the p-adic topology is totally disconnected.
(c) Show that the Cantor set with the standard topology is totally disconnected.

253



MAST30026 Resources, Arun Ram, July 24, 2022

22.9 First countable, second countable and separable spaces

Let (X, T ) be a topological space.

• (X, T ) is first countable if N (a) is countably generated for each a 2 X,

i.e. (X, T ) is first countable if X satisfies: if a 2 X then

there exist N1, N2, . . . 2 N (a) such that
if N 2 N (a) then there exists r 2 Z>0 such that N ◆ Nr.

• (X, T ) is second countable if T is countably generated,

i.e. (X, T ) is second countable if X satisfies:

there exist U1, U2, . . . 2 T such that

if U 2 T then there exists S ✓ Z>0 such that U =
[

s2S
Us.

• (X, T ) is separable if it has a countable dense set,

i.e. (X, T ) is separable if X satisfies:

there exist x1, x2, . . . 2 X such that {x1, x2, . . .} = X.

1. (Second countable implies first countable) Let (X, T ) be a topological space. Show that if (X, T )
is second countable then (X, T ) is first countable.

2. (Second countable implies separable) Let (X, T ) be a topological space. Show that if (X, T ) is
second countable then (X, T ) is separable.

3. (separable does not imply second countable) Show that R with the topology T = {unions of [a, b)}
is separable but not second countable.

4. (first countable does not imply second countable) Show that R with the discrete topology is first
countable but not second countable.

5. (a topological space that is not first countable) Show that R with the topology T = {U ✓

R | U
c is a finite set} is a topological space that is not first countable.

6. (metric spaces are first countable) Let (X, d) be a metric space. Show that X with the metric
space topology is first countable.

7. (for metric spaces, second countable is equivalent to separable) Let (X, d) be a metric space with
the metric space topology. Show that X is second countable if and only if X is separable.
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8. (metric spaces are not always separable)

(a) Show that R with the standard topology is separable.
(b) Show that R with the discrete topology is not separable.
(b) Show that Rn is separable.
(c) Show that `1 is separable.
(d) Let p 2 R>1. Show that `p is separable.
(e) Show that `1 is not separable.

9. (closure and limits of sequences in first countable spaces) Let (X, T ) be a first countable topo-
logical space and let A ✓ X. Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A such that z = lim

n!1
an

 
,

where A is the closure of A in X.

10. (continuity and limits of sequences in first countable spaces) Let (X, TX) and (Y, TY ) be topo-
logical spaces such that (X, TX) is first countable. Let f : X ! Y be a function. Then f is
continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n!1

xn exists then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).

This result says that, when (X, TX) is first countable, f is continuous if and only if f commutes
with limn!1.

11. (metric spaces with a countable dense set have a countable base) [BR, Ch. 2 Ex. 23] A metric
space (X, d) is separable if it has a countable dense set.
A base of a topological space (X, T ) is a subset B of T such that every open set of X is a union
of elements of B. Show that if X has a countable dense subset A then the open balls B✏(a) for
✏ 2 Q, a 2 A form a countable base of X (with the metric space topology). IS IT ENOUGH
TO TAKE B✏(a) with ✏ 2 {1, 12 ,

1
3 , . . .} and a 2 A????

12. (countable dense sets in topological spaces) [Bou, Ch. I §1 Ex. 7 and its footnotes] Consider the
following four properties of a topological space (X, T ).

(DI) X has a countable base.
(DII) X has a countable dense set.
(DIII) Every subset of X, all of whose points are isolated, is countable.
(DIV ) Every set of mutually disjoint non-empty open subsets of X is countable.

Show that (DI) ) (DII), (DI) ) (DIII), (DII) ) (DIV ) (DIII) ) (DIV ). MAKE A PIC-
TURE THAT SHOwS THIS

For (DIV ) 6) (DIII) and (DIV ) 6) (DII) see [Bou, Top. Ch. I §8 Ex. 6b].
For (DII) + (DIII) 6) (DI), see [Bou, Top. Ch. IX §5 Ex. 16].
For (DII) 6) (DIII)) see [Bou, Top. Ch. I §9 Ex. 23].
For (DIII) 6) (DII)) see [Bou, Top. Ch. I §9 Ex. 23].
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13. (DIV ) 6) (DIII): Let A = P(Z>0), where P(X) denotes the set of subsets of X. Let {0, 1} have
the discrete topology. Show that the product space {0, 1}A satisfies (DIV ) and does not satisfy
(DIII). (See [Bou, Top. Ch. I §4 Ex. 4b and c].)

14. (DII) 6) (DIII): Let A = P(Z>0)), where P(X) denotes the set of subsets of X. Let {0, 1} have
the discrete topology. Show that the product space {0, 1}A satisfies (DII) and does not satisfy
(DIII). (See [Bou, Top. Ch. I §4 Ex. 5b].)

15. ((DIII) 6) (DII)) Let X0 = [0, 1] with the standard topology. Let T be the topology on [0, 1]
generated by the open intervals in [0, 1] and the complements of countable sets in [0, 1]. Show
that ([0, 1], T ) satisfies (DIII) and does not satisfy (DII). (See [Bou, Top. Ch. I §9 Ex. 23c].)

16. ((DII)) + (DIII) 6) (DI)) LOOK THIS UP IN THE NEW VERSION (See [Bou, Top. Ch. IX
§5 Ex. 16].)

17. (countable dense sets in metric spaces) [Bou, Top. Ch. IX §2 no. 8 Proposition 12] and [Bou, Top.
Ch. I §1 Ex. 7 footnote]. Let (X, d) be a metric space. Show that the following are equivalent.

(DI) X has a countable base.
(DII) X has a countable dense set.
(DIII) Every subset of X, all of whose points are isolated, is countable.
(DIV ) Every set of mutually disjoint non-empty open subsets of X is countable.

22.10 Additional sample exam questions

22.10.1 Open and closed sets and limits

1. Let X be a topological space and let x 2 X. Consider the following definitions of “neighborhood
of x”:

A neighborhood of x is a set N ✓ X such that x 2 N
�.

A neighborhood of x is a set V ✓ X such that there exists an open set U of X with
x 2 U ✓ V .

Show that these two definitions of “neighborhood of x” are equivalent.

2. Let X = R2. For x = (x1, x2) and y = (y1, y2) 2 X define

dM (x, y) =

(
|x2 � y2|, if x1 = y1,

|x1 � y1|+ |x2|+ |y2|, if x1 6= y1.

Also let kxk � (x21 + x
2
2)

1
2 and define

dK(x, y) =

(
kx� yk, if x = ty for some t 2 R;
kxk+ kyk , otherwise.

(Can you give reasonable interpretations of the metrics dM and dK?)

Study the convergence of the sequence xn in the spaces (X, dM ) and (X, dK) if
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(a) xn = (
1

n
,

n

n+ 1
);

(b) xn = (
n

n+ 1
,

n

n+ 1
);

(c) xn = (
1

n
,
p
n+ 1�

p
n).

3. Let {xn} and {yn} be sequences in a metric space (X, d) such that xn ! x and yn ! y as
n ! 1. Prove that d(xn, yn) ! d(x, y) as n ! 1.

4. Let C be the circle in R2 with the centre at (0, 1/2) and radius 1/2. Let X = C \{(0, 1)}. Define
the function f : R ! X by defining f(t) to be the point at which the line segment from (t, 0) to
(0, 1) intersects X.

(a) Show that f : R ! X and f
�1 : X ! R are continuous.

(b) Define for s, t 2 R
⇢(s, t) = |f(s)� f(t)|

where | | is the standard norm in R2. Show that ⇢ defines a metric on R which is topologically
equivalent to the standard metric on R.

5. Let d and d
0 be topologically equivalent metrics on X. Show that

(a) A ✓ X is closed in (X, d) if and only if A is closed in (X, d
0);

(b) A ✓ X is open in (X, d) if and only if A is open in (X, d
0).

6. Let X be a metric space and let x1, x2, . . . be a sequence in X. Show that lim
n!1

xn is unique, if

it exists.

7. Let X be a topological space and let E be a subset of X. Let x 2 X. Show that x is a close
point of E if and only if there exists a sequence x1, x2, . . . of points in E such that lim

n!1
xn = x.

8. Let (X, d) be a metric space, let A ✓ X and let A be the closure of A in X. Show that

A = {z 2 X | there exists a sequence (a1, a2, . . .) in A with lim
n!1

an = z}.

9. Let X be a topological space and let E be a subset of X. Let E
� be the interior of E. Show

that E is open if and only if E = E
�.

10. Let X be a topological space and let E be a subset of X. Let E
� be the interior of E. Show

that E� is the set of interior points of E.

11. Let X be a topological space and let E be a subset of X. Let E be the closure of E. Show that
E is closed if and only if E = E.
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12. Let (X, d) be a metric space and let x 2 X and r 2 R>0. Show that

Br(x) = {y 2 X | d(x, y)  r}

is a closed set in the metric space topology on X.

13. Give an example of a metric space (X, d) and a point x 2 X such that B1(x) 6= B1(x).

14. Let (X, d) be a metric space and let x 2 X and r 2 R>0. Show that Br(x) ✓ Br(x, r).

15. Let X be a set with the discrete metric d. Show that every subset of X is both open and closed
(in the metric space topology on X).

16. LetX be a topological space. Show thatX is discrete if and only if the only convergent sequences
are those which are eventually constant.

17. Let X be a set and let C be a collection of subsets of X. Show that C is the set of closed sets
for a topology on X if and only if C satisfies

(a) finite unions of elements of C are in C,
(b) Arbitrary intersections of elements of C are in C, ; 2 C and X 2 C.

18. Let A be an open subset of a metric space (X, d).

(a) Show, directly from the definition, that if b 2 A then A \ {b} is open in X.
(b) If B is a finite subset of A show, using (a) or otherwise, that A \B is open in X.
(c) Deduce that every finite subset of X is closed in X.

19. Let X be a topological space, and let A be a subset of X.

(a) Define the closure A of A. (Give a definition in terms of closed sets.)
(b) Show that x 2 A if and only if every open neighbourhood of x intersects A.
(c) Using (b) or otherwise, show that if f : X ! Y is a continuous map between topological

spaces and A ✓ X then f(A) ✓ f(A).

20. Let (X, T ) be a topological space.

(a) Define the interior A0 of a subset A ✓ X

(b) Prove that (A \B)0 = A
0
\B

0
.

(c) Define the closure A of A ✓ X. Give an example of subsets A,B in the real line R, with
the usual Euclidean topology, which satisfy A \B 6= A \B.

21. Let (X, d) and Y, d
0) be metric spaces and let f, g : X ! Y be continuous.

(a) Show that the set {x 2 X : f(x) = g(x)} is a closed subset of X.
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(b) Show that if f, g : X ! R are continuous, then f�g is continuous and {x 2 X : f(x) < g(x)}
is open.

22. Let (X, T ) be a topological space. Let U be open in X and let A be closed in X. Show that
U \A is open in X and A \ U is closed in X.

23. Consider the set X = [�1, 1] as a metric subspace of R with the standard metric. Let

(a) A = {x 2 X | 1/2 < |x| < 2};
(b) B = {x 2 X | 1/2 < |x|  2};
(c) C = {x 2 R | 1/2  |x| < 1};
(d) D = {x 2 R | 1/2  |x|  1};
(e) E = {x 2 R | 0 < |x|  1 and 1/x 62 Z}.

Classify the sets in (a)–(e) as open/closed in X and R.

24. Consider R2 with the standard metric. Let

(a) A = {(x, y)| � 1 < x  1 and � 1 < y < 1};
(b) B = {(x, y)| xy = 0};
(c) C = {(x, y)| x 2 Q, y 2 R};
(d) D = {(x, y)|� 1 < x < 1 and y = 0};
(e) E =

S1
n=1{(x, y)|x = 1/n and |y|  n}.

Sketch (if possible) and classify the sets in (a)–(e) as open/closed/neither in R2.

25. Find the interior, the closure and the boundary of each of the following subsets of R2 with the
standard metric:

(a) A = {(x, y)) | x > 0 and y 6= 0};
(b) B = {(x, y) | x 2 Z>0, y 2 R};
(c) C = A [B;
(d) D = {(x, y) | x is rational};
(e) F = {(x, y) | x 6= 0 and y  1/x}.

26. Let A be a subset of a metric space X. Is the interior of A equal to the interior of the closure
of A? Is the closure of the interior of A equal to the closure of A itself?

27. Consider a collection {Ai}i2I of subsets of a metric space X. Show that

[

i2I
A

�
i ✓

 
[

i2I
Ai

!� \

i2I
Ai ✓

\

i2I
Ai

 
\

i2I
Ai

!�

✓

\

i2I
A

�
i

[

i2I
Ai ✓

[

i2I
Ai
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28. Let (X, d) be a metric space. Show that if A ✓ X, then

(a) A = A [ @A.
(b) @A = A \A

� and A
� = A \ @A.

(c) A is closed if and only if @A = A \A
�.

(d) A is open if and only if @A = A \A.

29. Let X and Y be metric spaces and A, B non-empty subsets of X and Y , respectively. Prove
that

(a) If A⇥B is an open subset of X ⇥ Y , then A and B are open in X and Y , respectively.
(b) If A⇥B is a closed subset of X ⇥ Y , then A and B are closed in X and Y , respectively.

30. Let (X, dX) and (Y, dY ) be metric spaces and A, B are dense subsets of X and Y , respectively.
Show that A⇥B is dense in X ⇥ Y .

31. Let (X1, d1), . . . , (X`, d`) be metric spaces. Show that a sequence xn = (x(1)n , . . . , x
(`)
n ) in X1 ⇥

· · ·⇥X` converges if and only if each of the sequences x(i)n (in Xi) converges.

32. Let X be a topological space and let A ✓ X. Show that if x 2 X satisfies

if r 2 R>0 then Br(x) \A 6= ; and Br(x) \A
c
6= ; then x 2 @A.

33. Let X be a topological space and let A ✓ X. Show that @A is a closed subset of X.

34. Let X = R with the usual topology.

(a) Determine (with proof) @([0, 1]).
(b) Determine @Q (with proof, of course).

35. Let (X, d) be a metric space. Let x 2 X. Show that {x} ✓ X is closed (in the metric space
topology on X).

36. Let (X, d) be a metric space and let x 2 X. Show that x is isolated if and only if there exists
" 2 R>0 such that B"(x) = {x}.

37. Let X = R with the usual topology. Show that

(a) Z>0 is a discrete set in R.
(b) {

1
n
| n 2 Z>0} ✓ R is a discrete set in R.

38. In R with the usual topology give an example of
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(a) a set A ✓ R which is both open and closed,
(b) a set B ✓ R which is open and not closed,
(c) a set C ✓ R which is closed and not open,
(d) a set D ✓ R which is not open and not closed.

39. Let X = R with the usual topology. Show that

(a) [0, 1) ✓ R is not open and not closed,
(b) Q ✓ R is not open and not closed.

40. Let X = R with the usual topology.

(a) Show that Q is dense in R.
(b) Show that Qc is dense in R.
(c) Show that Z>0 is nowhere dense in R.
(d) Show that Z is nowhere dense in R.
(e) Show that R is nowhere dense in R2.

41. Let C be the Cantor set in R, where R has the usual topology.

(a) Show that C is closed in R.
(b) Show that C does not contain any interval in R.
(c) Show that C has nonempty interior.
(d) Show that C is nowhere dense in R.

22.10.2 Continuity

1. Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be a function. Let a 2 X. Show that
f is continuous at a if and only if f satisfies:

if " 2 R>0 then there exists � 2 R>0 such that if x 2 and d(x, a) < � then ⇢(f(x), f(a)) < ".

2. Let X and Y be topological spaces and let f : X ! Y be a function. Show that f is continuous
if and only if f satisfies:

if a 2 X then f is continuous at a.

3. Let X and Y be metric spaces and let f : X ! Y be a function. Let a 2 X. Show that f is
continuous at a if and only if f satisfies:

if " 2 R>0 then there exists � 2 R>0 such that f(B�(a)) ✓ B"(f(a)).
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4. Let X and Y be metric spaces and let f : X ! Y be a function. Let a 2 X. Show that f is
continuous at a if and only if f satisfies

if x1, x2, . . . is a sequence in X and lim
n!1

xn = x0 then lim
n!1

f(xn) = f(x0).

5. Let X and Y be metric spaces and let f : X ! Y be a function. Let a 2 X. Show that f is
continuous at a if and only if f satisfies:

if x1, x2, . . . is a convergent sequence in X then lim
n!1

f(xn) = f
�
lim
n!1

xn

�
.

6. Let X and Y be topological spaces. Let f : X ! Y be a function. Show that f is continuous if
and only if f satisfies: if F ✓ Y is closed then f

�1(F ) is closed in X.

7. Let X, Y and Z be topological spaces and let f : X ! Y and g : Y ! Z be continuous functions.
Show that g · f is a continuous function.

8. Let X, Y be topological spaces and let f : X ! Y be a continuous function. Let A ✓ X. Show
that the restriction of f to A, f |A : A ! Y is continuous.

9. Let (X, d), (Y1, ⇢1) and (Y2, ⇢2) be metric spaces. Let f : X ! Y1 and g : X ! Y2 be functions.
Define h : X ! Y1 ⇥ Y2 by h(x) = (f(x), g(x)). Let a 2 X. Show that h is continuous if and
only if f and g are continuous at a.

X
�
�! X ⇥X??yf⇥g

Y1 ⇥ Y2

x 7! (x, x)

7!

(f(x), g(x))

10. For a topological space X and a sequence ~x = (x1, x2, . . .) in X write

y = lim
n!1

xn,
if y is a limit point of ~x : Z>0 ! X

with respect to the tail filter on Z>0.

(a) Let X and Y be topological spaces. Define what it means for a function f : X ! Y to be
continuous.

(b) Let X and Y be uniform spaces. Define what it means for a function f : X ! Y to be
uniformly continuous.

(c) Let X and Y be uniform spaces. Show that if f : X ! Y uniformly continuous then
f : X ! Y is continuous.

(d) Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be a function. Show that
f : X ! Y is continuous if and only if f satisfies

if ✏ 2 R>0 and x 2 X then there exists � 2 R>0 such that
if y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.
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(e) Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be a function. Show that
f : X ! Y is uniformly continuous if and only if f satisfies

if ✏ 2 R>0 then there exists � 2 R>0 such that
if x, y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.

(f) Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be a function. Show that f is
continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n!1

xn exists then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).

11. (Functions on R�0)

(a) Carefully define continuous and uniformly continuous functions.
(a) Let n 2 Z>0. Prove that the function x

n : R�0 ! R�0 is continuous.
(b) Let n 2 Z>1. Prove that the function x

n : R�0 ! R�0 is not uniformly continuous.
(b) Let n 2 {0, 1}. Prove that the function x

n : R�0 ! R�0 is uniformly continuous.
(c) Prove that the function e

x : R�0 ! R�0 is continuous.

12. Let X = [0, 2⇡) and Y = S
1 = {(x, y) 2 R2

| x
2 + y

2 = 1}. Let f : [0, 2⇡) ! S
1 be given by

f(x) = (cosx, sinx).

(a) Show that f is continuous.
(b) Show that f is a bijection.
(c) Show that f�1 : S1

! [0, 2⇡) is not continuous.
(d) Why does this not contradict the following statement: Let X and Y be topological spaces

and let f : X ! Y be a continuous function. Assume f is a bijection, X is compact and Y

is Hausdor↵. Then the inverse function f
�1 : Y ! X is continuous.

13. Let X = R�0 with metric given by d(x, y) = |x� y|. Show that the function

R�0 ⇥ R�0 ! R�0

(x, y) 7! x+ y
is uniformly continuous

and the function

R�0 ⇥ R�0 ! R�0

(x, y) 7! xy
is continuous but not uniformly continuous.

14. Let (X, d), (Y1, ⇢1) and (Y2, ⇢2) be metric spaces. Let f : X ! Y1 and g : X ! Y2 be functions.
Define

h : X ! Y1 ⇥ Y2 by h(x) = (f(x), g(x)).

Show that h is continuous if and only if f and g are continuous.

15. Let X be a topological space and let f : X ! R and g : X ! R be continuous functions.
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(a) Show that f + g is continuous.
(b) Show that f · g is continuous.
(a) Show that f � g is continuous.
(d) Show that if g satisfies if x 2 X then g(x) 6= 0 then f/g is continuous.

16. Let (X, d) be a metric space. Show that d : X ⇥X ! R is continuous.

17. Let f : R⇥ R ! R be given by

f(x, y) =

8
<

:

xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

If a 2 R let `a : R ! R be given by `a(y) = f(a, y). If b 2 R let rb : R ! R be given by
rb(x) = f(x, b).

(a) Let a 2 R. Show that `a : R ! R is continuous.
(b) Let b 2 R. Show that rb : R ! R is continuous.
(c) Show that f is not continuous at (0,0).

18. Give an example of metric spaces X, Y and Z and a function f : X ⇥ Y ! Z such that

(a) if x 2 X then
`x : Y ! Z

y 7! f(x, y)
is continuous,

(b) if y 2 Y then
ry : X ! Z

x 7! f(x, y)
is continuous, and

(c) f : X ⇥ Y ! Z is not continuous.

19. Let X be a topological space and let A ✓ X and B ✓ X be closed subsets of X such that
X = A [ B. Let Y be a topological space and let f : A ! Y and g : B ! Y be continuous
functions such that if x 2 A \B then f(x) = g(x). Define h : X ! Y by

h(x) =

(
f(x), if x 2 A,

g(x), if x 2 B.

Show that h : X ! Y is continuous.

20. Show that the function f : R ! R given by

f(x) =
x

1 + x2
is uniformly continuous.

21. Show that the function f : R ! R given by f(x) = x
2, is not uniformly continuous.
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22. Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be a function. Show that if f is
uniformly continuous then f is continuous.

23. Let X = C[0, 1]. Let
F : X ! R be defined by F (f) = f(0).

Let

d1(f, g) = sup{|f(x)� g(x)| | x 2 [0, 1]} and

d1(f, g) =

Z 1

0
|f(x)� g(x)|dx.

Is F continuous when X is equipped with (a) the metric d1, (b) the metric d1?

24. Let (X, dX) and (Y, dY ) be metric spaces. Show that f : X ! Y is continuous if and only if f
satisfies

(a) If A ✓ X then f(A) ✓ f(A), or
(b) If B ✓ Y then f�1(B) ✓ f

�1(B).

25. Let (X, d) be a metric space and let a 2 X. Show that

if x, y 2 X then |d(x, a)� d(y, a)|  d(x, y).

Conclude that the function f : X ! R defined by f(x) = d(x, a) is uniformly continuous.

26. Which of the following functions are uniformly continuous?

(a) f(x) = sinx on [0,1)

(b) g(x) =
1

1� x
on (0, 1)

(c) h(x) =
p
x on [0,1)

(d) k(x) = sin(1/x), on (0, 1)

27. Suppose that A is a dense subset of a metric space (X, d) and f : A ! R is uniformly continuous.
Show that there exists a unique continuous function

g : X ! R such that if x 2 A then g(x) = f(x).

22.10.3 Sequences of functions

1. Let (X, d) and (Y, ⇢) be metric spaces. Let (f1, f2, . . .) be a sequence of functions fk : X ! Y

and let f : X ! Y be a function. Show that (f1, f2, . . .) converges uniformly to f

if and only if lim
k!1

(sup{⇢(fk(x), f(x)) | x 2 X}) = 0.
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2. Let (X, d) and (Y, ⇢) be metric spaces. Let (f1, f2, . . .) be a sequence of functions fk : X ! Y

and let f : X ! Y be a function. Suppose that (f1, f2, . . .) converges uniformly to f : X ! Y .
Show that f : X ! Y is continuous.

3. Let (f1, f2, . . .) be a sequence of linear transformations fk : Rn
! Rm which are not identically

zero,
i.e., if k 2 Z>0 then there exists xk 2 Rn such that fk(xk) 6= 0.

Show that there exists x 2 Rn such that if k 2 Z>0 then fk(x) 6= 0.

4. Let (f1, f2, . . .) be a sequence of continuous functions fn : R ! R such that

if x 2 Q then {f1(x), f2(x), . . .} is unbounded.

Prove that there exists x 2 Qc such that {f1(x), f2(x), . . .} is unbounded.

5. Which of the following sequences of functions converge uniformly on the interval [0, 1]

(a) fn : [0, 1] ! R given by fn(x) = nx
2(1� x)n,

(b) fn : [0, 1] ! R given by fn(x) = n
2
x(1� x

2)n,
(c) fn : [0, 1] ! R given by fn(x) = n

2
x
3
e
�nx

2
.

6. Determine whether the following sequences of functions converge uniformly.

(a) fn : [0, 1] ! R given by fn(x) = e
�nx

2
, x 2 [0, 1];

(b) gn : [0, 1] ! R given by gn(x) = e
�x

2
/n
, x 2 [0, 1].

(c) gn : R ! R given by gn(x) = e
�x

2
/n
, x 2 R.

7. Let (X, d) be a metric space and let (f1, f2, . . .) be a sequence of continuous functions fn : X ! R.

(a) Give the definition of uniform convergence of the sequence (f1, f2, . . .) to a function f : X !

R.
(b) Prove that if (f1, f2, . . .) converges uniformly to f : X ! R then f is a continuous function.

(c) Let fn : [0, 1] ! R be given by fn(x) =
1� x

n

1 + xn
. Find the pointwise limit f of the sequence

(f1, f2, . . .).

(d) Let fn : [0, 1] ! R be given by fn(x) =
1� x

n

1 + xn
. Is the sequence (f1, f2, . . .) uniformly

convergent?

8. Let (X, d) be a metric space and let (f1, f2, . . .) be a sequence of continuous functions fn : X ! R.

(a) Define what it means for the sequence (f1, f2, . . .) to converge uniformly to f : X ! R.
(a) (b)] Suppose that (f1, f2, . . .) is a sequence of continuous functions, fn : [0, 1] ! R. Assume

that (f1, f2, . . .) converges uniformly to f : [0, 1] ! R. Prove that if x 2 [0, 1] then

Z
x

0
fn(t)dt converges uniformly to

Z
x

0
f(t)dt.
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(c) Let fn : [0, 1] ! R be given by fn(x) =
x
n

1 + x+ xn
. Is the sequence (f1, f2, . . .) uniformly

convergent?

9. Let (X, dX) and (Y, dY ) be metric spaces, and let {fn} be a sequence of functions fn : X ! Y .

(a) Define what it means for the sequence (f1, f2, . . .) to converge uniformly to a function
f : X ! Y .

(b) Prove that if each fn is bounded and (f1, f2, . . .) converges uniformly to f then f is bounded.
(c) Define fn : [0, 1] ! R by

fn(x) =
nx

2

1 + nx
.

Find the pointwise limit f of the sequence (f1, f2, . . .) and determine whether the sequence
converges uniformly to f .

10. Let X = C[0, 1] = {f : [0, 1] ! R | f is continuous}. The supremum metric d1 : X ⇥X ! R�0

and the L
1 metric d1 : X ⇥X ! R�0 are defined by

d1(f, g) = sup{|f(x)� g(x)| | x 2 [0, 1]} and

d1(f, g) =

Z 1

0
|f(x)� g(x)| dx.

Consider the sequence {f1, f2, f3, . . .} in X where

fn(x) = nx
n(1� x).

(a) Determine whether (f1, f2, . . .) converges in (X, d1).
(b) Determine whether (f1, f2, . . .) converges in (X, d1).

11. Let (X, d) and (C, ⇢) be metric spaces. Let

F = {functions f : X ! C} and define d1 : F ⇥ F ! R�0 [ {1} by

d1(f, g) = sup{⇢(f(x), g(x)) | x 2 X}.

(Warning d1 is not quite a metric since its target is not R�0.) Let

(f1, f2, . . . ) be a sequence in F and let f : X ! C

be a function.

The sequence (f1, f2, . . .) in F converges pointwise to f if the sequence (f1, f2, . . .) satisfies

if x 2 X and ✏ 2 R>0 then there exists N 2 Z>0 such that
if n 2 Z�N then d(fn(x), f(x)) < ✏.

The sequence (f1, f2, . . .) in F converges uniformly to f if the sequence (f1, f2, . . .) satisfies

if ✏ 2 R>0 then there exists N 2 Z>0 such that
if x 2 X and n 2 Z�N then ⇢(fn(x), f(x)) < ✏.
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(a) Show that (f1, f2, . . .) converges pointwise to f if and only if (f1, f2, . . .) satisfies

if x 2 X then lim
n!1

⇢(fn(x), f(x)) = 0.

(b) Show that (f1, f2, . . .) converges uniformly to f if and only if (f1, f2, . . .) satisfies

lim
n!1

d1(fn, f) = 0.

12. Let (X, dX) and (Y, dY ) be metric spaces, and let (f1, f2, . . .) be a sequence of functions: fn : X !

Y for n 2 Z>0.

(a) Define what it means for the sequence (f1, f2 . . .) to converge uniformly to a function f :
X ! Y .

(b) Define what it means for a function g : X ! Y to be bounded.
(c) Prove that if each fn is bounded and (f1, f2, . . .) converges uniformly to f , then f is also

bounded.
(d) Define fn : [0, 1] ! R for each n 2 Z>0 by

fn(x) =
nx

2

1 + nx
, for x 2 [0, 1].

Find the pointwise limit f of the sequence (f1, f2, . . .) and determine whether the sequence
converges uniformly to f .

22.10.4 Open dense sets and nowhere dense sets

1. Let (X, d) be a metric space and let U ✓ X and V ✓ X. Show that if U and V are open and
dense then U \ V is open and dense.

2. Let X = R with the usual metric and let U = Q and V = Qc. Show that U and V are dense
and U \B = ;.

3. Let X = Q with the usual metric and let Q = {q1, q2, q3, . . .} be an enumeration of Q. For
n 2 Z>0 let Qn = Q� {qn}.

(a) Show that if n 2 Z>0 then Qn is open and dense.

(b) Show that
\

n2Z>0

Qn = ;.

4. Let (X, d) be a complete metric space and let U1, U2, U3, . . . be a sequence of open and dense

subsets of X. Show that
\

n2Z>0

Un is dense in X.

5. Let (X, d) be a complete metric space and let F1, F2, F3, . . . be a sequence of nowhere dense

subsets of X. Show that
[

n2Z>0

Fn has empty interior.
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6. Show that R, with the standard topology, cannot be be written as a countable union of nowhere
dense sets.

7. Let X = Q, with the standard topology. Let Q = {q1, q2, . . .} be an enumeration of Q. Show

that {qn} is nowhere dense. Determine the interior of
[

n2Z>0

{qn}.

8. Let (X, d) be a complete metric space and let (f1, f2, f3, . . .) be a sequence of continuous functions

fn : X ! R, for n 2 Z>0.

Assume that if x 2 X then (f1(x), f2(x), . . .) is bounded in X. Show that there exists an open
set U ✓ X such that

there exists M 2 R>0 such that if x 2 U and n 2 Z>0 then |fn(x)|  M .

22.10.5 Connectedness

1. Let X be a set with Card(X) > 1.

(a) Show that X with the discrete topology is disconnected.
(b) Show that X with the indiscrete topology is connected.

2. Let X1 and X2 be the subspaces of R given by

X1 = R� {0} and X2 = Q.

Show that X1 and X2 are disconnected.

3. Let Y = {0, 1} with the discrete topology. Let X be a topological space. Show that X is
connected if and only if every continuous function f : X ! Y is constant.

4. Let X and Y be topological spaces and let f : X ! Y be a continuous function. Let E ✓ X.
Show that if E is connected then f(E) is connected.

5. Let X be a connected topological space and let A ✓ X. Show that if A is connected then A, the
closure of A, is connected.

6. Let A = (�1, 0) and B = (0,1) as subsets of R. Show that A is connected, B is connected
and A [B is not connected.

7. Let X be a topological space. Let S be a collection of subsets of X such that
\

A2S
A 6= ;. Show

that
[

A2S
A is connected.
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8. Let X be a topological space such that

if x, y 2 X then there exists A ✓ X such that x 2 A, y 2 A and A is connected.

Show that X is connected.

9. Let X be a topological space. For x 2 X let Cx be the connected component containing x.

(a) Let y 2 X. Show that Cy is connected and closed.
(b) Show that the connected components of X partition X.

10. Let X be a set with the discrete topology. Determine (with proof) the connected components
of X.

11. Graph each of the following sets and determine (with proof) whether they are connected in R2?

(a) H = {(x, y) 2 R2
| xy = 1 and x, y > 0},

(b) L = {(x, 0) | x 2 R},
(c) X = H [ L,
(d) Cn =

�
(x, y) 2 R2

�� (x�
1
n
)2 + y

2 = 1
n2

 
, for n 2 Z,

(e) X =
S

n2Z>0
Cn.

12. Let (X, T ) be a topological space and let A ✓ X be connected. Show that

if A ✓ B ✓ A then B is connected.

13. Let (X, T ) be a topological space and let A ✓ X and B ✓ X be connected. Show that

if A \B 6= ; then A [B is connected.

14. A point p 2 X is called a cut point if X \ {p} is disconnected. Show that the property of having
a cut point is a topological property. (A property of a topological space is a topological property
if it is preserved under homeomorphisms.)

15. Let X be a topological space. Show that if X is path connected then X is connected.

16. Let X = {(t, sin(⇡t)) | t 2 (0, 2]} ✓ R2. Let

' : R2
! R be given by '(x, y) = x.

(a) Show that ' : X ! (0, 2] is a homeomorphism.
(b) Show that X is connected.
(c) Show that X is connected.
(d) Show that X is not path connected.
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17. Show that the following hold for subsets of a topological space X;

(a) if subsets A,B are path connected and A \B 6= ; then A [B is path connected.
(b) Show that every point of X is contained in a unique path component, which can be defined

as the largest path connected subset of X containing this point.
(c) Give examples to show that the path components need not be open or closed.
(d) Prove that if X is locally path connected, i.e every point of x is contained in an open set

U which is path connected, then every path component is open.
(e) Conclude that if X is locally path connected, then the path components coincide with the

connected components.

18. Prove that if X and Y are path connected then X ⇥ Y is also path connected.

19. A topological space X is defined as locally connected if X satsifies:

if x 2 X and V ✓ X is open and x 2 V

then there exists a connected open set U ✓ V with x 2 U .

(a) Show that if X is locally connected then all the connected components of X are open.
(b) Assume X is a vector space with a norm. Show that any open subset A ✓ X is locally

connected.

20. Show that R and R2 are not homeomorphic (where R and R2 are equipped with the usual
topologies).

21. Let A be a countable set. Show that R2
\A is path connected.

22. Show that
if A ✓ Rn is open and connected then A is path connected.

[Hint: Fix a point x0 2 A and consider the set U of all x 2 A which can be joined to x0 by a
path in A. Show that U and A \ U are open.]

23. A metric space (X, dX) is chain connected if (X, dX) satisfies

if x, y 2 X and " 2 R>0 then there exists n 2 Z>0 and x = x0, x1, x2, . . . xn = y

such that if i 2 {0, 1, . . . , n� 1} then dX(xi+1, xi) < ".

Prove that a compact chain connected metric space is connected.

24. Let

A = {(x, y) 2 R2
| x

2 + y
2
< 1} and B = {(x, y) 2 R2

| (x� 2)2 + y
2
< 1}.

Determine whether

X = A [B, Y = A [B and Z = A [B

are connected subsets of R2 with the usual topology.
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25. Let X be a connected topological space and let f : X ! R be a continuous function, where R
has the usual topology. Show that if f takes only rational values then f is a constant function.

26. Show that X = {(x, y) 2 R2
| xy = 0} is not homeomorphic to R (with the usual topologies).

[Hint: consider the e↵ect of removing points from X and R.]

27. Explain why the following pairs of topological spaces are not homeomorphic. (Each has the
topology induced from the usual embedding into a Euclidean space).

(a) R and S
1, where S

1 is the unit circle {(x, y) 2 R2
| x

2 + y
2 = 1}.

(b) (0,1) and (0, 1].
(c) A = {(0, y) | y 2 R} [ {(x, 0) | x 2 R} and

B = {(0, y) | y 2 R, y � 0} [ {(x, 0) | x 2 R}.

28. Prove that no two of the following spaces are homeomorphic:

(i) X = [�1, 1] with the topology induced from R;
(ii) Y = {(x, y) 2 R2

| x
2 + y

2
< 1} with the topology induced from R2;

(iii) Z = {(x, y) 2 R2
| x

2 + y
2
 1} with the topology induced from R2.

29. Define d : R>1 ! R�0 by

d(x, y) =

8
<

:

����
1
p
x
�

1
p
y

����, if x 6= y,

0, if x = y.

(a) Show that d is a metric.

(b) Show that � : (1,1) ! (0, 1) defined by �(x) =
1
p
x

is an isometry.

(c) Determine (with proof) if the metric space ((1,1), d) is connected.
(d) Determine (with proof) if the metric space ((1,1), d) is compact.

30. (a) LetX be a topological space and let A and B be connected subsets ofX such that A\B 6= ;.
Prove that A [B is a connected subset of X.

(b) Let f : X ! Y be a continuous map between topological spaces. Prove that if X is compact
then f(X) is compact.

31. Show that Q, with the standard topology, is totally disconnected (i.e. each connected component
contains only one point).

32. Show that a subset of R is connected if and only if it is an interval.

33. Carefully state the Intermediate Value Theorem.
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34. State and prove the Intermediate Value Theorem.

35. Let X be a connected topological space and let f : X ! R be a continuous function. Show that
if x, y 2 X and r 2 R such that f(x)  r  f(y) then there exists c 2 X such that f(c) = r.

36. (a) Let (X, dX) and (Y, dY ) be a metric spaces and let f : X ! Y be a function. Let E ✓ X.
Prove that if f : X ! Y is continuous and E is connected then f(E) is connected.

(b) Carefully state the intermediate value theorem.
(c) Prove the intermediate value theorem.

22.10.6 Hausdor↵ and normal spaces

1. Let (X, d) be a metric space.

(a) Define the metric space topology T on X.
(b) Define Hausdor↵ and show that the topological space (X, T ) is Hausdor↵.
(c) Define normal and show that the topological space (X, T ) is normal.
(d) Define first countable and show that the topological space (X, T ) is first countable.
(e) Give an example (with proof) of a topological space (Y,U) which is not Hausdor↵.
(f) Give an example (with proof) of a topological space (Y,U) which is not normal.
(g) Give an example (with proof) of a topological space (Y,U) which is not first countable.

2. (a) Define topological space and Hausdor↵ topological space.
(b) Give an example of a topological space which is not Hausdor↵.
(c) Show that metric spaces are Hausdor↵ (with the metric space topology).

22.10.7 Distances and diameters

1. Let A be a nonempty subset of a metric space (X, d). Show that

(a) x 2 A if and only if d(x,A) = 0.
(b) Show that diam(A) = diam(A).

2. Show that if A ✓ X then diam(A) = diam(A). Does diam(A) = diam(A�)?

3. Let (X, d) be a metric space and let A be a non-empty subset of X. Recall that for each x 2 X,
the distance from x to A is

d(x,A) = inf{d(x, a) : a 2 A}.

(a) Prove that A = {x 2 X : d(x,A) = 0}.
(b) Prove that |d(x,A) � d(y,A)|  d(x, y) for all x, y 2 X. (Hint: first show that d(x,A) 

d(x, y) + d(y,A).)
(c) Deduce the function f : X ! R defined by f(x) = d(x,A) is continuous.

(d) Show that if x /2 A then U = {y 2 X | d(y,A) < d(x,A)} is an open set in X such that
A ✓ U and x /2 U .

273



MAST30026 Resources, Arun Ram, July 24, 2022

4. Let (X, d) be a metric space and fix a point p 2 X.

(a) Prove that the function f : X ! R defined by f(x) = d(p, x) is continuous, where R has
the usual metric.

(b) Let A be a non-empty compact subset of X.

(i) Prove that there exists a point a 2 A such that

d(p, a) = inf{d(p, x) | x 2 A}.

(ii) Give an example to show that the point a as in (i) need not be unique.
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