23 Problem list: Function spaces and number systems

23.1 Properties of $\mathbb{R}_{\geq 0}$

- 1. ($\mathbb{R}_{\geq 0}$ is an ordered commutative monoid with multiplication)
 - (a) Show that if $x, y, z \in \mathbb{R}_{\geq 0}$ and $x \leq y$ then $x + z \leq y + z$.
 - (b) Show that if $x, y \in \mathbb{R}_{\geq 0}$ then $xy \in \mathbb{R}_{\geq 0}$
- 2. (Continuity of the operations in $\mathbb{R}_{\geq 0}$) Let $X = \mathbb{R}_{\geq 0}$ with metric given by d(x, y) = |x y|. Show that the functions

and the function

$$\begin{array}{cccc} \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} & \to & \mathbb{R}_{\geq 0} \\ (x,y) & \mapsto & xy \end{array} \quad \text{is continuous but not uniformly continuous.}$$

- 3. (numbers gone missing)
 - (a) Show that $\sqrt{2} \notin \mathbb{Q}_{>0}$.
 - (b) Show that $\pi \notin \mathbb{Q}_{>0}$.
 - (c) Show that $e \notin \mathbb{Q}_{\geq 0}$.
 - (d) Show that $\sqrt{-1} \notin \mathbb{Q}$.
 - (e) Show that $\sqrt{-1} \notin \mathbb{R}$.
- 4. (The topology on $\mathbb{Q}_{\geq 0}$) Show that $\mathbb{Q}_{\geq 0}$ is not discrete and that $\mathbb{Q}_{\geq 0}$ is Hausdorff. Show that $\mathbb{Q}_{\geq 0}$ is not a complete uniform space.
- 5. (The uniformity on \mathbb{Q})
 - (a) Show that $\mathbb{Q}_{>0}$ is not a complete uniform space.
 - (b) Show that $|x|, x^+ = \sup(x, 0)$ and $x^- = \sup(-x, 0)$ are uniformly continuous on \mathbb{Q} .
 - (c) Show that $\sup(x, y)$ and $\inf(x, y)$ are uniformly continuous on $\mathbb{Q} \times \mathbb{Q}$.
- 6. ($\mathbb{R}_{\geq 0}$ is complete) Show that $\mathbb{R}_{\geq 0}$ is a complete metric space.
- 7. (Intervals in $\mathbb{R}_{>0}$) Let $a, b \in \mathbb{R}_{>0}$ with a < b.
 - (a) Show that [a, b] is closed in $\mathbb{R}_{\geq 0}$.
 - (b) Show that (a, b) is open in $\mathbb{R}_{\geq 0}$.
- 8. (Using intervals to determine the topology on \mathbb{R})

- (a) Show that if $U \subseteq \mathbb{R}$ and $0 \in U$ and U is open then U contains a subset in $\{[-r, r] \mid r \in \mathbb{Q}_{>0}\}$.
- (b) Show that if $x \in R$ and $U \subseteq \mathbb{R}$ and $x \in U$ and U is open then U contains a subset in $\{[x-r, x+r] \mid r \in \mathbb{Q}_{>0}\}.$
- 9. (Rationals between reals) Let $a, b \in \mathbb{R}_{>0}$ with a < b.
 - (a) Show that there exists a rational number $r \in \mathbb{Q}_{\geq 0}$ with a < r < b.
 - (b) Show that there exists an irrational number $r \in \mathbb{Q}_{\geq 0}^c$ with a < r < b.
- 10. (The Archimedean axiom holds) If $x, y \in \mathbb{R}_{>0}$ then there exists $n \in \mathbb{Z}_{>0}$ such that y < nx.
- 11. (increasing bounded sequences converge) Let $(a_1, a_2, ...)$ be a sequence in \mathbb{R} such that $a_1 \leq a_2 \leq \cdots$ and there exists $b \in \mathbb{R}$ such that if $i \in \mathbb{Z}_{>0}$ then $a_i < b$. Show that $\lim_{n \to \infty} a_n$ exists, $\sup\{a_1, a_2, ...\}$ exists and

$$\lim_{n \to \infty} a_n = \sup\{a_1, a_2, \ldots\}.$$

- 12. (The Heine-Borel or Borel-Lebesgue theorem) Let $A \subseteq \mathbb{R}$. Show that A is compact if and only if A is closed and bounded.
- 13. (\mathbb{R} is locally compact) Show that \mathbb{R} is locally compact and not compact.
- 14. ($\mathbb{R}_{\geq 0}$ is locally compact) Show that $\mathbb{R}_{\geq 0}$ is locally compact and that the one-point compactification $\mathbb{R}_{\geq 0} \cup \{\infty\}$ is compact. Conclude that every sequence in $\mathbb{R}_{\geq 0}$ has a cluster point in $\mathbb{R}_{\geq 0} \cup \{\infty\}$.
- 15. (The least upper bound property) Let $A \subseteq \mathbb{R}$ with $A \neq \emptyset$ and A bounded above. Then $\sup(A)$ exists.
- 16. (connected subsets of \mathbb{R} are intervals) Let $A \subseteq \mathbb{R}$. Show that A is connected if and only if A is an interval.
- 17. (continuous injective functions are strictly monotonic) Let I be an interval in $\mathbb{R}_{\geq 0}$ and let $f: I \to \mathbb{R}_{\geq 0}$ be a continuous function.
 - (a) Show that f is injective if and only if f is strictly monotonic.
 - (b) Show that if f is injective then $f: I \to f(I)$ is a homeomorphism.
- 18. $(x^n \text{ is a homeomorphism})$ Show that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is a homeomorphism. (See Boul Top. Ch. IV §3 no. 3]).

23.2 Axioms for $\mathbb{R}_{\geq 0}$ and Dedekind cuts

1. (Ordered sets with addition and Archimedes' property) This is from [Bou, Ch. V §2]. Let E be a totally ordered set with order \leq and smallest element 0. Let

 $I \subseteq E \qquad \text{with a function} \quad \begin{array}{ccc} I \times I & \to & E \\ (x,y) & \to & x+y \end{array}$

such that

(I1)
$$0 \in I$$
,
(I2) If $x \in I$ and $y \in E$ and $y \leq x$ then $y \in I$,

and

(GR_I) If $x \in I$ then x + 0 = 0 + x = x,

- (GR'_I) If $x, y, z \in I$ then x + (y + z) = (x + y) + z,
- (GR_{II}) If $x, y, z \in I$ and x < y then x + z < y + z and z + x < z + y,
- (GR_{III}) $\{y \in I \mid y > 0\} \neq \emptyset$ and $\{y \in I \mid y > 0\}$ and has no smallest element,
- (GR'_{III}) If $x, y \in I$ and x < y then there exists $z \in I$ such that z > 0 and $x + z \le y$,
- (GR_{*IV*}) ("Archimedes' axiom") If $x, y \in I$ and x > 0 then there exists $n \in \mathbb{Z}_{>0}$ such that $nx \in E$ and nx > y.

Show that there exists a strictly increasing function $f: I \to \mathbb{R}_{>0}$ such that

if $x, y \in I$ and $x + y \in I$ then f(x + y) = f(x) + f(y).

Moreover, if $b \in I$ then $f(I) \cap [0, f(b)]$ is dense in [0, f(b)].

Proof seed: Let \mathcal{F} the filter on I for which the sets $\{[0, z] \mid z \in I, z > 0\}$ form a base. Let $a \in I$ with a > 0 and define

$$f(x) = \lim_{z \to 0} \frac{\left\lfloor \frac{x}{z} \right\rfloor}{\left\lfloor \frac{a}{z} \right\rfloor}, \quad \text{where} \quad \left\lfloor \frac{x}{z} \right\rfloor = \max\{n \in \mathbb{Z}_{\geq 0} \mid nz \le x\},$$

and $\lim_{z\to 0}$ is the limit with respect to the filter \mathcal{F} on I.

2. (Replacing Archimedes' property with the least upper bound property) Let E be a totally ordered set with order \leq and smallest element 0. Let

$$I \subseteq E$$
 with a function $\begin{array}{ccc} I \times I &
ightarrow E \\ (x,y) &
ightarrow x+y \end{array}$

such that

(I1) $0 \in I$, (I2) If $x \in I$ and $y \in E$ and $y \leq x$ then $y \in I$,

and

 $\begin{array}{l} ({\rm GR}_I) \ \mbox{If} \ x \in I \ \mbox{then} \ x + 0 = 0 + x = x, \\ ({\rm GR}_I') \ \ \mbox{If} \ x, y, z \in I \ \mbox{then} \ x + (y + z) = (x + y) + z, \\ ({\rm GR}_{II}) \ \ \mbox{If} \ x, y, z \in I \ \mbox{and} \ x < y \ \mbox{then} \ x + z < y + z \ \mbox{and} \ z + x < z + y, \end{array}$

Assume

- (GR_{IIIa}) $\{y \in I \mid y > 0\} \neq \emptyset$ and $\{y \in I \mid y > 0\}$ and has no smallest element,
- (GR'_{IIIa}) If $x, y \in I$ and x < y then there exists $z \in I$ such that x + z = y,
- (GR_{IVa}) Every increasing sequence of elements of I which is bounded above by an element of I has a least upper bound in I.

Then

(GR_{*IV*}) ("Archimedes' axiom") If $x, y \in I$ and x > 0 then there exists $n \in \mathbb{Z}_{>0}$ such that $nx \in E$ and nx > y;

holds. (See Bou, Top. Ch. V §2].)

3. (Building the correspondence to $\mathbb{R}_{\geq 0}$) This is from [Bou, Ch. V §2]. Let *E* be a totally ordered set with order \leq and smallest element 0. Let

 $I \subseteq E$ with a function $\begin{array}{ccc} I \times I & \to & E \\ (x,y) & \to & x+y \end{array}$

such that

(I1) $0 \in I$, (I2) If $x \in I$ and $y \leq x$ then $y \in I$,

and

- (GR_I) If $x \in I$ then x + 0 = 0 + x = x,
- (GR'_I) If $x, y, z \in I$ then x + (y + z) = (x + y) + z,
- (GR_{II}) If $x, y, z \in I$ and x < y then x + z < y + z and z + x < z + y,

Assume

- (GR_{IIIa}) $\{y \in I \mid y > 0\} \neq \emptyset$ and $\{y \in I \mid y > 0\}$ and has no smallest element,
- (GR'_{IIIa}) If $x, y \in I$ and x < y then there exists $z \in I$ such that x + z = y,
- (GR_{IVa}) Every increasing sequence of elements of I which is bounded above by an element of I has a least upper bound in I.

Show that there exists $z \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ and a strictly increasing surjective function $f: I \to [0, z)$ or $f: I \to [0, z]$ such that f(0) = 0 and

if
$$x, y \in I$$
 and $x + y \in I$ then $f(x + y) = f(x) + f(y)$.

4. (Dedekind cuts) A *cut* is a subset x of $\mathbb{Q}_{>0}$ such that

- (a) $x \neq \emptyset$ and $x \neq \mathbb{Q}_{>0}$,
- (b) (lower ideal) If $p \in x$ and $q \in \mathbb{Q}_{>0}$ and q < p then $q \in x$,
- (c) (no maximal element) If $p \in x$ then there exists $r \in x$ with p < r.

Define a totally ordered set

$$\mathbb{R}_{>0} = \{ \text{cuts in } \mathbb{Q}_{>0} \}, \qquad \text{with} \quad x \le y \quad \text{if} \quad x \subseteq y.$$

Define an addition on $\mathbb{R}_{>0}$ by

$$x + y = \{r + s \mid r \in x \text{ and } s \in y\},\$$

and define a multiplication on $\mathbb{R}_{>0}$ by

$$xy = \{p \in \mathbb{Q}_{>0} \mid \text{there exists } r \in x \text{ and } s \in y \text{ with } p < rs\}.$$

Finally, define

$$\iota \colon \mathbb{Q}_{>0} \to \mathbb{R}_{>0} \qquad \text{by} \qquad \iota(r) = \{ p \in \mathbb{Q}_{>0} \mid p < r \}$$

Show that

- (1) ι is injective,
- (2) $\mathbb{R}_{>0}$ has no smallest element,
- (3) If $x, y, z \in \mathbb{R}_{>0}$ then (x+y) + z = x + (y+z),
- (4) If $x, y, z \in \mathbb{R}_{>0}$ and $x \leq y$ then $x + z \leq y + z$,
- (5) If $x, y \in \mathbb{R}_{>0}$ and x < y then there exists $z \in \mathbb{R}_{>0}$ such that x + z = y,
- (6) If $E \subseteq \mathbb{R}_{>0}$ and $E \neq \emptyset$ and E is bounded then $\sup(E)$ exists.

(see BRu, Ch. 1 Appendix]).

23.3 The mean value theorem

1. (continuous images of connected sets are connected and continuous images of compact sets are compact) Let (X, \mathcal{T}) be a topological space and let $E \subseteq X$. The set E is *connected* if there do not exist open sets A and B in X $(A, B \in \mathcal{T})$ with

 $A \cap E \neq \emptyset$ and $B \cap E \neq \emptyset$ and $A \cup B \supseteq E$ and $(A \cap B) \cap E = \emptyset$.

The set E is *compact* if E satisfies

if
$$S \subseteq \mathcal{T}$$
 and $E \subseteq \left(\bigcup_{U \in S} U\right)$ then there exists
 $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \dots, U_\ell \in S$ such that $E \subseteq U_1 \cup U_2 \cup \dots \cup U_\ell$.

Let $f: X \to Y$ be a continuous function and let $E \subseteq X$. Show that

- (a) If E is connected then f(E) is connected,
- (b) If E is compact then f(E) is compact.
- 2. (connected subsets of \mathbb{R} are intervals) Let $A \subseteq \mathbb{R}$, where the metric on \mathbb{R} is given by d(x, y) = |x y|. Show that

A is connected if and only if A is an interval,

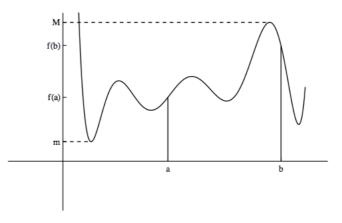
i.e. A is connected if and only if there exist $a, b \in \mathbb{R} \cup \{\infty, -\infty\}$ such that A = (a, b) or A = [a, b] or A = [a, b].

3. (connected compact subsets of \mathbb{R} are closed bounded intervals) Let $A \subseteq \mathbb{R}$, where the metric on \mathbb{R} is given by d(x, y) = |x - y|. Show that

A is connected and compact if and only if A is a closed bounded interval,

i.e. A is connected and compact if and only if there exist $a, b \in \mathbb{R}$ such that A = [a, b].

- 4. $(f: [a, b] \to \mathbb{R}$ have minimums and maximums and intermediate values) Let $a, b \in \mathbb{R}$ with a < b.
 - (a) Show that if $f: [a, b] \to \mathbb{R}$ is a continuous function and $w \in (f(a), f(b))$ then there exists $c \in (a, b)$ such that f(c) = w.
 - (b) Show that if $f: [a, b] \to \mathbb{R}$ is a continuous function then there exist $m, M \in \mathbb{R}$ such that f([a, b]) = [m, M].



The intermediate value theorem.

5. (Rolle's theorem) Let $a, b \in \mathbb{R}$ with a < b. Show that if $f: [a, b] \to \mathbb{R}$ is a function such that $f: [a, b] \to \mathbb{R}$ is continuous and $f': (a, b) \to \mathbb{R}$ exists

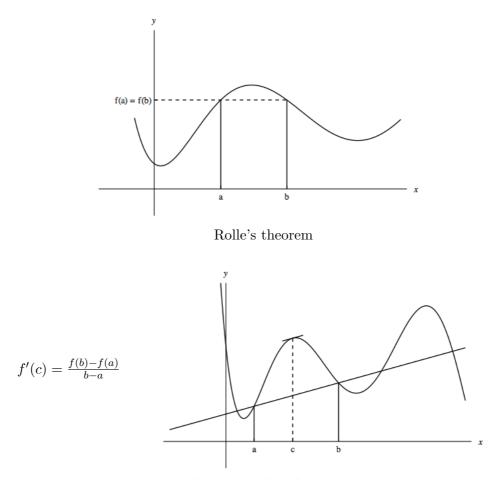
and f(a) = f(b) then there exists $c \in (a, b)$ such that f'(c) = 0.

6. (The mean value theorem) Let $a, b \in \mathbb{R}$ with a < b. Show that if $f : [a, b] \to \mathbb{R}$ is a function such that $f : [a, b] \to \mathbb{R}$ is continuous and $f' : (a, b) \to \mathbb{R}$ exists then there exists $c \in (a, b)$ such that

$$f(b) = f(a) + f'(c)(b - a).$$

7. (Taylor's theorem) Let $a, b \in \mathbb{R}$ with a < b and $N \in \mathbb{Z}_{\geq 0}$. Show that if $f : [a, b] \to \mathbb{R}$ is a function such that $f^{(N)} : [a, b] \to \mathbb{R}$ is continuous and $f^{(N+1)} : (a, b) \to \mathbb{R}$ exists then there exists $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{1}{2!}f''(a)(b-a)^2 + \cdots + \frac{1}{N!}f^{(N)}(a)(b-a)^N + \frac{1}{(N+1)!}f^{(N+1)}(c)(b-a)^{N+1}$$



The mean value theorem

23.4 Properties of \mathbb{Q}_p

- 1. (reducing to primes p) (See Mah, Ch. 5].)
 - (a) Let $p \in \mathbb{Z}_{>1}$ be prime and let $r \in \mathbb{Z}_{>0}$. Show that $\mathbb{Q}_{p^r} \cong \mathbb{Q}_p$.
 - (b) Let $\ell, m \in \mathbb{Z}_{>0}$ with $gcd(\ell, m) = 1$. Show that $\mathbb{Q}_{mn} = \mathbb{Q}_{\ell} \oplus \mathbb{Q}_{m}$.
 - (c) Let $\ell \in \mathbb{Z}_{>0}$ and let $\ell = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ be the prime factorization of ℓ . Show that $\mathbb{Q}_{\ell} \cong \mathbb{Q}_{p_1} \oplus \mathbb{Q}_{p_2} \oplus \cdots \oplus \mathbb{Q}_{p_k}$.
- 2. (\mathbb{Q}_p is a field if p is prime) Let $p \in \mathbb{Z}_{>1}$ be prime. Show that \mathbb{Q}_p is a field if and only if p is prime.

23.5 Triangle inequalities

- 1. (Cauchy-Schwarz and triangle inequalities in \mathbb{R}^n) Let $x, y \in \mathbb{R}^n$. Prove the following:
 - (a) (Lagrange's identity) $|x|^2 \cdot |y|^2 \langle x, y \rangle^2 = \frac{1}{2} \sum_{i,j=1}^n (x_i y_j x_j y_i)^2.$
 - (b) (Cauchy-Schwarz inequality) $\langle x, y \rangle \leq |x| \cdot |y|$.
 - (c) (triangle inequality) $|x + y| \le |x| + |y|$.

- 2. (Cauchy-Schwarz and triangle inequalities in inner product spaces) Let (V, \langle , \rangle) be a positive definite inner product space.
 - (a) (Cauchy-Schwarz inequality) Show that if $x, y \in V$ then $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
 - (b) (triangle inequality) Showthat if $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.
- 3. (Hölder and Minkowski inequalities) Let $q \in \mathbb{R}_{\geq 1}$ and let $p \in \mathbb{R}_{>1} \cup \{\infty\}$ be given by $\frac{1}{p} + \frac{1}{q} = 1$.

 - (a) (Young's inequality) Show that if $a, b \in \mathbb{R}_{>0}$ then $a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{1}{p} a + \frac{1}{q} b$. (b) (Hölder inequality for \mathbb{R}^n) Show that if $x, y \in \mathbb{R}^n$ then $|\langle x, y \rangle| \leq ||x||_p ||y||_q$.
 - (c) (Minkowski inequality for \mathbb{R}^n) Show that if $x, y \in \mathbb{R}^n$ then $||x + y||_p \le ||x||_p + ||y||_p$.
 - (d) (Hölder inequality) Show that if $x \in \ell^p$ and $y \in \ell^q$ then $|\langle x, y \rangle| \le ||x||_p ||y||_q$.
 - (e) (Minkowski inequality) Show that if $x \in \ell^p$ and $y \in \ell^q$ then $||x + y||_p \le ||x||_p + ||y||_p$.

The spaces ℓ^p 23.6

- 1. (Containment of ℓ^p -spaces) [Bressan, Ch. 2 Ex. 14] Let $p, s \in \mathbb{R}_{>1}$. Show that if $p \leq s$ then $\ell^p \subseteq \ell^s$.
- 2. $(\ell^p$ -spaces depend on p) [Bressan, Ch. 2 Ex. 14] Let $p, s \in \mathbb{R}_{>1}$. Show that if $p \neq s$ then $\ell^p \neq \ell^s$.
- 3. (the dual of \mathbb{R}^2 in the $\| \|_p$ norm) [Bressan, Ch. 2 Ex. 21] Let $\phi \colon \mathbb{R}^2 \to \mathbb{R}$ be a linear functional, say $\phi(x_1, x_2) = ax_2 + bx_2$. Give a direct proof that
 - (a) If \mathbb{R}^2 is endowed with the norm $||x||_1 = |x_1| + |x_2|$ then the corresponding operator norm is $\|\phi\|_{\infty} = \max\{|a|, |b|\}.$
 - (b) If \mathbb{R}^2 is endowed with the norm $||x||_{\infty} = \max\{|x_1|, |x_2|\}$ then the corresponding operator norm is $\|\phi\|_1 = |a| + |b|$.
 - (b) If $p \in \mathbb{R}_{>1}$ and \mathbb{R}^2 is endowed with the norm $||x||_p = (|x_1|^p + |x_2|^p)^{1/p}$ then the corresponding operator norm is $||\phi||_p = (|a|^q + |b|^q)^{1/q}$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- 4. (Dual of an ℓ^p -space) Let $p \in \mathbb{R}_{>1}$. Show that $(\ell^p)^* = \ell^q$ where $\frac{1}{p} + \frac{1}{q} = 1$.
- 5. (Dual of c_0) Show that $(c_0)^* = \ell^1$. (See Rudin, Real and complex analysis, Ch. 5 Ex. 9)
- 6. (Dual of ℓ^1) Show that $(\ell^1)^* = \ell^\infty$. (See Rudin, Real and complex analysis, Ch. 5 Ex. 9)
- 7. (Dual of ℓ^{∞}) [Bressan, Ch. 2 Ex. 27] Show that $(\ell^{\infty})^* \neq \ell^1$. (See Rudin, Real and complex analysis, Ch. 5 Ex. 9)
- 8. (ℓ^p is complete) Let $p \in \mathbb{R}_{>1}$. Show that ℓ^p is a complete metric space.

- 9. $(\ell^1 \text{ is complete})$ Show that ℓ^1 is a complete metric space.
- 10. (ℓ^{∞} is complete) Show that ℓ^{∞} is a complete metric space.
- 11. (c_0 is complete) Show that c_0 is the completion of

 $c_c = \{(x_1, x_2, \ldots) \in \ell^{\infty} \text{ all but a finite number of } x_i \text{ are } 0\}$

the space of sequences that are eventually 0. (IS THE esssup NORM AND THE SUP NORM THE SAME FOR COUNTING MEASURE? SEE Theorem 1.3 on the page http://www.ms.unimelb.edu.a

12. (The completion of c_c with respect to $\| \|_p$) Let $p \in \mathbb{R}_{>1}$. Show that ℓ^p is the completion of $c_c = \{(x_1, x_2, \ldots) \in \ell^p \text{ all but a finite number of } x_i \text{ are } 0\}$

the space of sequences that are eventually 0.

13. (the closure of the span of the standard basis in ℓ^p) [Bressan, Ch. 2 Ex. 15] Let

$$e_1 = (1, 0, 0, 0, 0, \ldots), \quad e_2 = (0, 1, 0, 0, 0, \ldots), \quad e_3 = (0, 0, 1, 0, 0, \ldots), \quad \ldots$$

and

let $p \in \mathbb{R}_{>1}$. Show that, in ℓ^p , $\overline{\operatorname{span}\{e_1, e_2, \ldots\}} = \ell^p$.

14. (the closure of the span of the standard basis in ℓ^1) [Bressan, Ch. 2 Ex. 15] Let

$$e_1 = (1, 0, 0, 0, 0, \dots), \quad e_2 = (0, 1, 0, 0, 0, \dots), \quad e_3 = (0, 0, 1, 0, 0, \dots), \quad \dots$$

Show that,

in
$$\ell^1$$
, $\overline{\operatorname{span}\{e_1, e_2, \ldots\}} = \ell^1$

15. (the closure of the span of the standard basis in ℓ^{∞}) [Bressan, Ch. 2 Ex. 15] Let

$$e_1 = (1, 0, 0, 0, 0, \dots), \quad e_2 = (0, 1, 0, 0, 0, \dots), \quad e_3 = (0, 0, 1, 0, 0, \dots), \quad \dots$$

Show that,

in
$$\ell^{\infty}$$
, $\overline{\operatorname{span}\{e_1, e_2, \ldots\}} = c_0$.

16. (weak convergence of the standard basis in ℓ^p) [Bressan, Ch. 2 Ex. 36] Let

 $e_1 = (1, 0, 0, 0, 0, \ldots), \quad e_2 = (0, 1, 0, 0, 0, \ldots), \quad e_3 = (0, 0, 1, 0, 0, \ldots), \quad \ldots,$ and let $p \in \mathbb{R}_{>1}$. Show that

in ℓ^p , the sequence (e_1, e_2, e_3, \ldots) weakly converges weakly to 0.

17. (weak convergence of the standard basis in ℓ^p) [Bressan, Ch. 2 Ex. 36] Let

$$e_1 = (1, 0, 0, 0, 0, \ldots), \quad e_2 = (0, 1, 0, 0, 0, \ldots), \quad e_3 = (0, 0, 1, 0, 0, \ldots), \quad \ldots$$

Show that,

in ℓ^1 , (e_1, e_2, e_3, \ldots) does not have any weakly convergent subsequence.

23.7 Absolute values and valuations

- 1. (absolute values and norms) [from Pete Clark, lecture notes on valuation theory] Let \mathbb{F} be a field. A *norm* on \mathbb{F} is a function $| : \mathbb{F} \to \mathbb{R}_{\geq 0}$ such that
 - (a) if $x \in \mathbb{F}$ then |x| = 0 if and only if x = 0,
 - (b) if $x, y \in \mathbb{F}$ then |xy| = |x||y|,
 - (c) if $x, y \in \mathbb{F}$ then $|x+y| \le |x|+|y|$.

An absolute value on \mathbb{F} is a function $||: \mathbb{F} \to \mathbb{R}_{\geq 0}$ such that

- (a) if $x \in \mathbb{F}$ then |x| = 0 if and only if x = 0,
- (b) if $x, y \in \mathbb{F}$ then |xy| = |x||y|,
- (c) There exists $C \in \mathbb{R}_{>0}$ such that if $x \in \mathbb{F}$ and $|x| \leq 1$ then $|x+1| \leq C$.

Show that this last condition is equivalent to

if
$$x, y \in \mathbb{F}$$
 then $|x+y| \leq C \max\{|x|, |y|\}.$

Show that $C \geq 1$. A non-Archimedean absolute value is an absolute value on \mathbb{F} such that C = 1. Show that an absolute value on \mathbb{F} is a norm on \mathbb{F} if and only if $C \leq 2$. Show that if | | is an absolute value on \mathbb{F} with constant C (take the inf to make this unique) and $\alpha \in \mathbb{R}_{>0}$ then $| |^{\alpha}$ is an absolute value on \mathbb{F} with constant C^{α} .

2. (valuations are the logs of absolute values) Let $(\mathbb{F}, | |)$ be a non-Archimedean normed field. The valuation ring is

 $\mathfrak{o} = \{ x \in \mathbb{F} \mid |x| \le 1 \} \qquad \mathfrak{m} = \{ x \in \mathbb{F} \mid |x| < 1 \}$

is the unique maximal ideal of \mathfrak{o} WHAT IS THE STATEMENT???

- 3. (valuation rings give valuations) [Atiyah-Macondald, Ch. 5 Ex. 30] Let \mathbb{F} be a field. A valuation ring of \mathbb{F} is a subring ring $\mathfrak{o} \subseteq \mathbb{F}$ such that
 - (a) \mathfrak{o} is an integral domain,
 - (b) ${\mathbb F}$ is the field of fractions of ${\mathfrak o},$
 - (c) If $x \in \mathbb{F}^{\times}$ then $x \in \mathfrak{o}$ or $x^{-1} \in \mathfrak{o}$.

Let $\mathfrak{o}^{\times} = \{ a \in \mathfrak{o} \mid a \text{ is invertible in } \mathfrak{o} \}$, let

$$\Gamma = \frac{\mathbb{F}^{\times}}{\mathfrak{o}^{\times}}, \quad \text{and let} \quad \text{val} \colon \mathbb{F}^{\times} \to \Gamma$$

be the quotient map. Define a partial order \leq on Γ by

$$a \leq b$$
 if $ab^{-1} \in \mathfrak{o}$.

Show that Γ is a totally ordered abelian group and val is a valuation of \mathbb{F} with values in Γ .

4. (valuations give valuation rings) [Atiyah-Macdonald, Ch. 5 Ex. 31] Let Γ be a totally ordered abelian group. Let \mathbb{F} be a field. A valuation of \mathbb{F} with values in Γ is a function

val:
$$\mathbb{F}^{\times} \to \Gamma$$
 such that

- (a) if $x, y \in \mathbb{F}^{\times}$ then $\operatorname{val}(xy) = \operatorname{val}(x) + \operatorname{val}(y)$,
- (b) if $x, y \in \mathbb{F}^{\times}$ then $\operatorname{val}(x+y) \ge \min\{\operatorname{val}(x), \operatorname{val}(y)\},\$

ARE THESE TWO INEQUALITIES IN THE CORRECT DIRECTION? The valuation ring of val is

 $\mathfrak{o} = \{ x \in \mathbb{F}^{\times} \mid \operatorname{val}(x) \ge 0 \}.$

Show that \mathfrak{o} is a valuation ring of \mathbb{F} .

23.8 Additional sample exam questions

23.8.1 Favourite examples

- 1. (Definition of the nonnegative real numbers)
 - (a) Carefully define the nonnegative real numbers $\mathbb{R}_{\geq 0}$.
 - (b) Carefully define the usual addition and multiplication on $\mathbb{R}_{>0}$.
 - (c) Carefully define the usual order on $\mathbb{R}_{\geq 0}$.
 - (d) Carefully define the usual topology $\mathbb{R}_{\geq 0}$.

Be careful that your definitions are not circular (i.e. be careful that your definitions are not somehow already using the real numbers to define the real numbers).

- 2. (Properties of the order on $\mathbb{R}_{>0}$)
 - (a) Prove that if $a, b, c \in \mathbb{R}_{>0}$ and $a \leq b$ then $a + c \leq b + c$.
 - (b) Prove that if $x, y \in \mathbb{R}_{>0}$ then there exists $n \in \mathbb{Z}_{>0}$ such that y < nx.
 - (c) Prove that if $a, b \in \mathbb{R}_{\geq 0}$ and a < b then there exists $c \in \mathbb{Q}_{\geq 0}$ (a rational number) such that a < c < b.
 - (d) Prove that if $a, b \in \mathbb{R}_{\geq 0}$ and a < b then there exists $c \in (\mathbb{R}_{\geq 0} \mathbb{Q}_{\geq 0})$ (an irrational number) such that a < c < b.
- 3. (Least upper bounds and increasing sequences in $\mathbb{R}_{\geq 0}$)
 - (a) Prove that if $A \subseteq \mathbb{R}_{>0}$ and $A \neq \emptyset$ and A is bounded then $\sup(A)$ exists.
 - (b) Give an example (with proof) of an increasing sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (c) Give an example (with proof) of a bounded sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (d) Prove that if $(a_1, a_2, ...)$ is an increasing and bounded sequence in $\mathbb{R}_{\geq 0}$ then $(a_1, a_2, a_3, ...)$ converges.
 - (e) Give an example (with proof) of an increasing and bounded sequence $(a_1, a_2, ...)$ in $\mathbb{Q}_{\geq 0}$ which does not converge.
- 4. (Properties of the topology on $\mathbb{R}_{>0}$)
 - (a) Let $a, b \in \mathbb{R}_{>0}$ with a < b. Prove that (a, b) is open in $\mathbb{R}_{>0}$.
 - (b) Let $a, b \in \mathbb{R}_{\geq 0}$ with a < b. Prove that [a, b] is closed in $\mathbb{R}_{\geq 0}$.
 - (c) Define compact and prove that $\mathbb{R}_{\geq 0}$ is not compact.

- (d) Define locally compact and prove that $\mathbb{R}_{>0}$ is locally compact.
- 5. (Properties of the uniform structure on $\mathbb{R}_{\geq 0}$)
 - (a) Carefully define the usual uniformity on $\mathbb{R}_{>0}$.
 - (b) Define complete and prove that $\mathbb{R}_{\geq 0}$ is complete.
- 6. (Connected and compact subsets of $\mathbb{R}_{\geq 0}$) Let $A \subseteq \mathbb{R}_{\geq 0}$.
 - (a) Prove that A is connected if and only if A is an interval.
 - (b) Prove that A is compact if and only if A is closed and bounded.
- 7. Assume that it is known that $\mathbb{R}_{>0}$ is complete.
 - (a) Prove that if $A \subseteq \mathbb{R}_{\geq 0}$ and $A \neq \emptyset$ and A is bounded then $\sup(A)$ exists.
 - (b) Give an example (with proof) of an increasing sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (c) Give an example (with proof) of a bounded sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (d) Prove that if $(a_1, a_2, ...)$ is an increasing and bounded sequence in $\mathbb{R}_{\geq 0}$ then $(a_1, a_2, a_3, ...)$ converges.
 - (e) Give an example (with proof) of an increasing and bounded sequence $(a_1, a_2, ...)$ in $\mathbb{Q}_{\geq 0}$ which does not converge.
- 8. Let $X = \{0, 1\}$ and let $\mathcal{T} = \{\emptyset, X, \{0\}\}.$
 - (a) Show that \mathcal{T} is a topology on X.
 - (b) Show that there does not exist a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ such that \mathcal{T} is the metric space topology of (X, d).
- 9. Define the standard metric on \mathbb{C} and show that \mathbb{C} , with this metric, is a metric space.
- 10. Let d be the standard metric on \mathbb{C} . Show that \mathbb{R} is a metric subspace of (\mathbb{C}, d) .
- 11. Define the standard metric on \mathbb{R}^n and show that \mathbb{R}^n , with this metric, is a metric space.
- 12. Define the standard norm on \mathbb{R}^n and show that \mathbb{R}^n , with this norm, is a normed vector space.
- 13. Define the norm $\| \|_p$ on \mathbb{R}^n and show that $(\mathbb{R}^n, \| \|_p)$ is a normed vector space.
- 14. Let X be a nonempty set. Define the set of bounded functions $B(X, \mathbb{R})$ and the sup norm on $B(X, \mathbb{R})$. Show that $B(X, \mathbb{R})$, with this norm, is a normed vector space.

- 15. Let $a, b \in \mathbb{R}$ with a < b. Define the set of continuous functions $C([a, b], \mathbb{R})$ and the L^1 -norm on $C([a, b], \mathbb{R})$. Show that $C([a, b], \mathbb{R})$, with this norm, is a normed vector space.
- 16. Let $a, b \in \mathbb{R}$ with a < b. Show that the set $C_{bd}([a, b]), \mathbb{R})$ of bounded continuous functions is a metric subspace of $C([a, b], \mathbb{R})$ with the L^1 -norm.
- 17. Let (X, d) and (Y, d') be metric spaces and let $C_b(X, Y)$ be the set of bounded continuous functions $f: X \to Y$ with the metric $\rho: C_b(X, Y) \times C_b(X, Y) \to \mathbb{R}_{>0}$ given by

$$\rho(f,g) = \sup\{d'(f(x),g(x)) \mid x \in X\}.$$

Show that if (Y, d') is complete then $(C_b(X, Y), \rho)$ is a complete metric space.

18. Let (X, d) and (Y, d') be metric spaces and let $C_b(X, Y)$ be the set of bounded continuous functions $f: X \to Y$ with the metric $\rho: C_b(X, Y) \times C_b(X, Y) \to \mathbb{R}_{\geq 0}$ given by

$$\rho(f,g) = \sup\{d'(f(x),g(x)) \mid x \in X\}.$$

Show that $(C_b(X, Y), \rho)$ is a metric space.

19. We can define d on $(1, \infty) \subseteq \mathbb{R}$ by

$$d(x,y) = \begin{cases} \left|\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}}\right| & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

- (a) Explain briefly why d is a metric on $(1, \infty)$
- (b) Show that the mapping $\phi : (1, \infty) \to (0, 1)$ defined by $\phi(x) = \frac{1}{\sqrt{x}}$ is an isometry from the metric space $((1, \infty), d)$ to (0, 1) with the usual Euclidean metric.
- (c) Is the metric space $((1, \infty), d)$ connected?
- (d) Is the metric space $((1, \infty), d)$ compact? Give brief explanations.

20. Let $p \in \mathbb{R}_{>1}$ and define $q \in \mathbb{R}_{>1}$ by $\frac{1}{p} + \frac{1}{q} = 1$.

- (a) Define the normed vector space ℓ^p .
- (b) Show that ℓ^p is a Banach space.
- (c) Prove that the dual of ℓ^p is ℓ^q .

21. Let $p \in \mathbb{R}_{\geq 1}$ and define

$$\ell^{p} = \{ (x_{1}, x_{2}, \ldots) \mid x_{i} \in \mathbb{R} \text{ and } \|\vec{x}\|_{p} < \infty \}, \text{ where } \|\vec{x}\|_{p} = \left(\sum_{i \in \mathbb{Z}_{>0}} |x_{i}|^{p} \right)^{1/p}$$

for a sequence $\vec{x} = (x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$.

(a) Show that if $p \leq q$ then $\ell^p \subseteq \ell^q$.

- (b) Show that if $p \neq q$ then $\ell^p \neq \ell^q$.
- 22. Let $p \in \mathbb{R}_{>1}$. Let $e_i = (0, 0, \dots, 0, 1, 0, 0, \dots)$ with 1 in the *i*th entry. Show that $\{e_1, e_2, e_3, \dots\}$ is a Schauder basis of ℓ^p .
- 23. Check if the following functions are metrics on X.
 - (a) $d(x, y) = |x^2 y^2|$ for $x, y \in X = \mathbb{R}$
 - (b) $d(x,y) = |x^2 y^2|$ for $x, y \in X = (-\infty, 0]$
 - (c) $d(x,y) = |\arctan x \arctan y|$ for $x, y \in X = \mathbb{R}$
- 24. (French railroad metric) Let $X = \mathbb{R}^2$ and let d be the usual metric. Denote by $\mathbf{0} = (0,0)$ and define

$$d_{\mathbf{0}}(x,y) = \begin{cases} 0, & \text{if } x = y; \\ d(x,\mathbf{0}) + d(\mathbf{0},y), & \text{if } x \neq y. \end{cases}$$

Verify that d_0 is a metric on X. (Paris is at the origin **0**.)

25. Let $X = \mathbb{R}^2$. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ define

$$d(x,y) = \begin{cases} 1/2 & \text{if } x_1 = y_1 \text{ and } x_2 \neq y_2 \text{ or if } x_1 \neq y_1 \text{ and } x_2 = y_2; \\ 1 & \text{if } x_1 \neq y_1 \text{ and } x_2 \neq y_2; \\ 0 & \text{otherwise.} \end{cases}$$

Verify that d is a metric and that two congruent rectangles, one with base parallel to the x-axis and the other at 45° to the x-axis, have different "area" if d is used to measure the length of sides.

- 26. Let (X, d) be a metric space. Consider the function $f : [0, \infty) \to [0, \infty)$ having the following properties:
 - (a) f is non-decreasing, i.e. $f(a) \le f(b)$ if $0 \le a < b$;
 - (b) f(x) = 0 if and only if x = 0;
 - (c) $f(a+b) \le f(a) + f(b), a, b \in [0, \infty).$

If $x, y \in X$ define $d_f(x, y) = f(d(x, y))$. Show that d_f is a metric and that the functions f(t) = ktwhere k > 0, $f(t) = t^{\alpha}$ where $0 < \alpha \leq 1$, and $f(t) = \frac{t}{1+t}$ for $t \geq 0$ have properties (a)–(c).

27. (**p-adic metric**) Let p be a prime number. Define the p-*adic absolute value function* $||_p$ on \mathbb{Q} by setting $|x|_p = 0$ when x = 0 and $|x|_p = p^{-k}$ when $x = p^k \cdot \frac{m}{n}$ where m, n are nonzero integers which are not divisible by p. Show that for $x, y \in \mathbb{Q}$,

$$|x+y|_p \le \max\{|x|_p, |y|_p\}$$

and that $d(x,y) = |x - y|_p$ defines a metric on \mathbb{Q} . In fact, $d(x,z) \leq \max\{d(x,y), d(y,z)\}$. If d satisfies this condition which is stronger than the triangle inequality then d is called an *ultrametric*.

28. Sketch the open ball B(0,1) in the metric space (\mathbb{R}^3, d_i) , where d_i is defined by

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|$$

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|\}.$$

for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3) \in \mathbb{R}^3$.

29. Set

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right|$$

for $n, m \in \mathbb{Z}_{>0}$. Then d is a metric.

- (a) Let $P \subset \mathbb{Z}_{>0}$ be the set of positive even numbers. Find diam(P) and diam $(\mathbb{Z}_{>0} \setminus P)$ in $(\mathbb{Z}_{>0}, d)$.
- (b) For a fixed $n \in \mathbb{Z}_{>0}$ find all elements of $B(2n, \frac{1}{2n})$ and $B(n, \frac{1}{2n})$.

30. Let $X = \mathbb{R}^2$. For $x = (x_1, x_2)$ and $y = (y_1, y_2) \in X$ define

$$d_M(x,y) = \begin{cases} |x_2 - y_2|, & \text{if } x_1 = y_1, \\ |x_1 - y_1| + |x_2| + |y_2|, & \text{if } x_1 \neq y_1. \end{cases}$$

Also define

$$d_K(x,y) = \begin{cases} \|x-y\| & \text{if } x = ty \text{ for some } t \in \mathbb{R}; \\ \|x\| + \|y\| & \text{otherwise.} \end{cases}$$

where $||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$. (Can you give reasonable interpretations of the metrics d_M and d_K ?)

Study the convergence of the sequence x_n in the spaces (X, d_M) and (X, d_K) if

(a)
$$x_n = (\frac{1}{n}, \frac{n}{n+1});$$

(b) $x_n = (\frac{n}{n+1}, \frac{n}{n+1});$
(c) $x_n = (\frac{1}{n}, \sqrt{n+1} - \sqrt{n}).$

23.8.2 Open, closed, dense and nowhere dense sets

- 1. Give two metrics d and d' on \mathbb{R} such that \mathbb{Q} is open in the metric space topology on (\mathbb{R}, d) and \mathbb{Q} is not open in the metric space topology on (\mathbb{R}, d') .
- 2. In \mathbbm{R} with the usual topology give an example of
 - (a) a set $A \subseteq \mathbb{R}$ which is both open and closed,
 - (b) a set $B \subseteq \mathbb{R}$ which is open and not closed,
 - (c) a set $C\subseteq \mathbb{R}$ which is closed and not open,
 - (d) a set $D \subseteq \mathbb{R}$ which is not open and not closed.

- 3. Let $X = \mathbb{R}$ with the usual topology. Show that
 - (a) $[0,1) \subseteq \mathbb{R}$ is not open and not closed,
 - (b) $\mathbb{Q} \subseteq \mathbb{R}$ is not open and not closed.
- 4. Consider the set X = [-1, 1] as a metric subspace of \mathbb{R} with the standard metric. Let
 - (a) $A = \{x \in X \mid 1/2 < |x| < 2\};$
 - (b) $B = \{x \in X \mid 1/2 < |x| \le 2\};$
 - (c) $C = \{x \in \mathbb{R} \mid 1/2 \le |x| < 1\};$
 - (d) $D = \{x \in \mathbb{R} \mid 1/2 \le |x| \le 1\};$
 - (e) $E = \{x \in \mathbb{R} \mid 0 < |x| \le 1 \text{ and } 1/x \notin \mathbb{Z}\}.$

Classify the sets in (a)–(e) as open/closed in X and \mathbb{R} .

5. Consider \mathbb{R}^2 with the standard metric. Let

- (a) $A = \{(x, y) | -1 < x \le 1 \text{ and } -1 < y < 1\};$
- (b) $B = \{(x, y) | xy = 0\};$
- (c) $C = \{(x, y) | x \in \mathbb{Q}, y \in \mathbb{R}\};$
- (d) $D = \{(x, y) | -1 < x < 1 \text{ and } y = 0\};$ (e) $E = \bigcup_{n=1}^{\infty} \{(x, y) | x = 1/n \text{ and } |y| \le n\}.$

Sketch (if possible) and classify the sets in (a)–(e) as open/closed/neither in \mathbb{R}^2 .

- 6. Find the interior, the closure and the boundary of each of the following subsets of \mathbb{R}^2 with the standard metric:
 - (a) $A = \{(x, y) \mid x > 0 \text{ and } y \neq 0\};$
 - (b) $B = \{(x, y) \mid x \in \mathbb{Z}_{>0}, y \in \mathbb{R}\};$
 - (c) $C = A \cup B;$
 - (d) $D = \{(x, y) \mid x \text{ is rational}\};$
 - (e) $F = \{(x, y) \mid x \neq 0 \text{ and } y \leq 1/x\}.$
- 7. Let $X = \mathbb{R}$ with the usual topology.
 - (a) Determine (with proof) $\partial([0,1])$.
 - (b) Determine $\partial \mathbb{Q}$ (with proof, of course).
- 8. Let $X = \mathbb{R}$ with the usual topology. Show that
 - (a) $\mathbb{Z}_{>0}$ is a discrete set in \mathbb{R} .
 - (b) $\{\frac{1}{n} \mid n \in \mathbb{Z}_{>0}\} \subseteq \mathbb{R}$ is a discrete set in \mathbb{R} .
- 9. Let $X = \mathbb{R}$ with the usual topology.

- (a) Show that \mathbb{Q} is dense in \mathbb{R} .
- (b) Show that \mathbb{Q}^c is dense in \mathbb{R} .
- (c) Show that $\mathbb{Z}_{>0}$ is nowhere dense in \mathbb{R} .
- (d) Show that \mathbb{Z} is nowhere dense in \mathbb{R} .
- (e) Show that \mathbb{R} is nowhere dense in \mathbb{R}^2 .
- 10. Let C be the Cantor set in \mathbb{R} , where \mathbb{R} has the usual topology.
 - (a) Show that C is closed in \mathbb{R} .
 - (b) Show that C does not contain any interval in \mathbb{R} .
 - (c) Show that C has nonempty interior.
 - (d) Show that C is nowhere dense in \mathbb{R} .
- 11. Let C be the Cantor set and let $Q = \{x \in \mathbb{Q} \mid 0 \le x \le 1\}$. Let C and Q have the subspace topology of the interval $X = [0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ in \mathbb{R} , where \mathbb{R} has the standard topology.
 - (a) Show that C is closed in X and not open in X, and Q is not closed in X and Q is not open in X.
 - (b) Show that C is nowhere dense in X and Q is dense in X.
 - (c) Show that C^c is dense in X and Q^c is dense in X.
 - (d) Show that C is compact and Q is not compact.
 - (e) Show that C and Q are both totally disconnected (i.e. every connected component is a set with a single point).
 - (e) Let μ be a function which assigns values to certain subsets of X which satisfies

$$\mu([a, b]) = b - a, \quad \text{if } a, b \in \mathbb{R} \text{ and } 0 \le a < b \le 1,$$

and

$$\mu\Big(\bigcup_{i\in\mathbb{Z}_{>0}}A_i\Big)=\sum_{i\in\mathbb{Z}_{>0}}\mu(A_i) \quad \text{if } A_1,A_2,\dots \text{ are disjoint subsets of } X \ .$$

Show that

$$\mu(C) = 0, \quad \mu(C^c) = 1, \quad \mu(Q) = 0, \text{ and } \mu(Q^c) = 1$$

- (f) Show that $\operatorname{Card}(C) = \operatorname{Card}(\mathbb{R})$, $\operatorname{Card}(C^c) = \operatorname{Card}(\mathbb{R})$, $\operatorname{Card}(Q) \neq \operatorname{Card}(\mathbb{R})$ and $\operatorname{Card}(Q^c) = \operatorname{Card}(\mathbb{R})$.
- 12. Let $X = \mathbb{R}$ with the usual metric and let $U = \mathbb{Q}$ and $V = \mathbb{Q}^c$. Show that U and V are dense and $U \cap B = \emptyset$.
- 13. Let $X = \mathbb{Q}$ with the usual metric and let $\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$ be an enumeration of \mathbb{Q} . For $n \in \mathbb{Z}_{>0}$ let $Q_n = \mathbb{Q} \{q_n\}$.
 - (a) Show that if $n \in \mathbb{Z}_{>0}$ then Q_n is open and dense.
 - (b) Show that $\bigcap_{n \in \mathbb{Z}_{>0}} Q_n = \emptyset$.

- 14. (Ch 3 Neighborhoods etc) Show that \mathbb{R} , with the standard topology, cannot be written as a countable union of nowhere dense sets.
- 15. Let $X = \mathbb{Q}$, with the standard topology. Let $\mathbb{Q} = \{q_1, q_2, \ldots\}$ be an enumeration of \mathbb{Q} . Show that $\{q_n\}$ is nowhere dense. Determine the interior of $\bigcup_{n \in \mathbb{Z}_{>0}} \{q_n\}$.
- 16. Let (X, d) be a complete metric space and let (f_1, f_2, f_3, \ldots) be a sequence of continuous functions

$$f_n \colon X \to \mathbb{R}, \quad \text{for } n \in \mathbb{Z}_{>0}.$$

Assume that if $x \in X$ then $(f_1(x), f_2(x), \ldots)$ is bounded in X. Show that there exists an open set $U \subseteq X$ such that

there exists $M \in \mathbb{R}_{>0}$ such that if $x \in U$ and $n \in \mathbb{Z}_{>0}$ then $|f_n(x)| \leq M$.

17. Let X be a complete normed vector space over \mathbb{R} . A sphere in X is a set

$$S(a,r) = \{ x \in X : d(x,a) = \|x-a\| = r \}, \quad \text{for } a \in X \text{ and } r \in \mathbb{R}_{>0}.$$

- (a) Show that each sphere in X is nowhere dense.
- (b) Show that there is no sequence of spheres $\{S_n\}$ in X whose union is X.
- (c) Give a geometric interpretation of the result in (b) when $X = \mathbb{R}^2$ with the Euclidean norm.
- (d) Show that the result of (b) does not hold in every complete metric space X.

23.8.3 Continuity

- 1. Let X be a topological space and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions.
 - (a) Show that f + g is continuous.
 - (b) Show that $f \cdot g$ is continuous.
 - (a) Show that f g is continuous.
 - (d) Show that if g satisfies if $x \in X$ then $g(x) \neq 0$ then f/g is continuous.
- 2. Let (X, d) be a metric space. Show that $d: X \times X \to \mathbb{R}$ is continuous.
- 3. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

If $a \in \mathbb{R}$ let $\ell_a : \mathbb{R} \to \mathbb{R}$ be given by $\ell_a(y) = f(a, y)$. If $b \in \mathbb{R}$ let $r_b : \mathbb{R} \to \mathbb{R}$ be given by $r_b(x) = f(x, b)$.

- (a) Let $a \in \mathbb{R}$. Show that $\ell_a \colon \mathbb{R} \to \mathbb{R}$ is continuous.
- (b) Let $b \in \mathbb{R}$. Show that $r_b \colon \mathbb{R} \to \mathbb{R}$ is continuous.

- (c) Show that f is not continuous at (0,0).
- 4. Show that the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x}{1+x^2}$ is uniformly continuous.
- 5. Show that the function $f \colon \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, is not uniformly continuous.
- 6. Let X and Y be topological spaces and assume that Y is Hausdorff. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions.
 - (a) Show that the set $\{x \in X \mid f(x) = g(x)\}$ is a closed subset of X.
 - (b) Show that if $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous then
 - f g is continuous.
 - (c) Show that if $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous then

$$\{x \in X \mid f(x) < g(x)\}$$
 is open.

- 7. Let C be the circle in \mathbb{R}^2 with the centre at (0, 1/2) and radius 1/2. Let $X = C \setminus \{(0, 1)\}$. Define the function $f : \mathbb{R} \to X$ by defining f(t) to be the point at which the line segment from (t, 0) to (0, 1) intersects X.
 - (a) Show that $f : \mathbb{R} \to X$ and $f^{-1} : X \to \mathbb{R}$ are continuous.
 - (b) Define for $s, t \in \mathbb{R}$

$$\rho(s,t) = |f(s) - f(t)|$$

where | | is the standard norm in \mathbb{R}^2 . Show that ρ defines a metric on \mathbb{R} which is topologically equivalent to the standard metric on \mathbb{R} .

- 8. Let X = C[0,1]. Let $F: X \to \mathbb{R}$ be defined by F(f) = f(0). Moreover, let $d_{\infty}(f,g) = \sup\{|f(x) g(x)| \mid x \in [0,1]\}$ and $d_1(f,g) = \int_0^1 |f(x) g(x)| dx$. Is F continuous when X is equipped with (a) the metric d_{∞} , (b) the metric d_1 ?
- 9. Which of the following functions are uniformly continuous?
 - (a) $f(x) = \sin x$ on $[0, \infty)$ (b) $g(x) = \frac{1}{1-x}$ on (0, 1)(c) $h(x) = \sqrt{x}$ on $[0, \infty)$
 - (d) $k(x) = \sin(1/x)$, on (0, 1)
- 10. Suppose that A is a dense subset of a metric space (X, d) and $f: A \to \mathbb{R}$ is uniformly continuous. Show that there exists exactly one continuous function $g: X \to \mathbb{R}$ satisfying g(x) = f(x) for $x \in A$. (Hint: You may need to use the completeness of \mathbb{R} .)

- 11. Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ be the unit circle in \mathbb{R}^2 , and let $f : S^1 \to \mathbb{R}$ be a continuous function. Show that there exists $x \in S^1$ such that f(x) = f(-x). (Hint: consider the function $g : S^1 \to \mathbb{R}$ where g(x) = f(x) f(-x).)
- 12. (Functions on $\mathbb{R}_{\geq 0}$)
 - (a) Carefully define continuous and uniformly continuous functions.
 - (a) Let $n \in \mathbb{Z}_{>0}$. Prove that the function $x^n \colon \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ is continuous.
 - (b) Let $n \in \mathbb{Z}_{>1}$. Prove that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is not uniformly continuous.
 - (b) Let $n \in \{0, 1\}$. Prove that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is uniformly continuous.
 - (c) Prove that the function $e^x \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is continuous.
- 13. Let X be a connected topological space. Let $f: X \to \mathbb{R}$ be continuous with $f(X) \subseteq \mathbb{Q}$. Show that f is a constant function.

14. Let $X = [0, 2\pi)$ and $Y = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let

 $f : [0, 2\pi) \to S^1$ be given by $f(x) = (\cos x, \sin x).$

- (a) Show that f is continuous.
- (b) Show that f is a bijection.
- (c) Show that $f^{-1}: S^1 \to [0, 2\pi)$ is not continuous.
- (d) Why does this not contradict the following statement: Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Assume f is a bijection, X is compact and Y is Hausdorff. Then the inverse function $f^{-1}: Y \to X$ is continuous.
- 15. Let $X = \mathbb{R}_{\geq 0}$ with metric given by d(x, y) = |x y|. Show that the function

 $\begin{array}{cccc} \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} & \to & \mathbb{R}_{\geq 0} \\ (x,y) & \mapsto & x+y \end{array} \text{ is uniformly continuous } \end{array}$

and the function

 $\begin{array}{cccc} \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} & \to & \mathbb{R}_{\geq 0} \\ (x,y) & \mapsto & xy \end{array} \quad \text{is continuous but not uniformly continuous.} \end{array}$

23.8.4 Sequences of functions

- 1. Let (X, d) and (Y, ρ) be metric spaces. Let $\{f_k\}$ be a sequence of functions $f_k \colon X \to Y$ and let $f \colon X \to Y$ be a function. Show that $\{f_k\}$ converges uniformly to f if and only if $\sup\{\rho(f_k(x), f(x)) \mid x \in X\} \to 0.$
- 2. Let $\{f_k\}$ be a sequence of continuous functions from a metric space (X, d) to a metric space (Y, ρ) . Suppose that $\{f_k\}$ converges uniformly to $f: X \to Y$. Show that $f: X \to Y$ is continuous.
- 3. Which of the following sequences of functions converge uniformly on the interval [0, 1]?

(a) $f_n(x) = nx^2(1-x)^n$ (b) $f_n(x) = n^2x(1-x^2)^n$ (c) $f_n(x) = n^2x^3e^{-nx^2}$

- 4. Let $\{f_k\}$ be a sequence of linear maps $f_k \colon \mathbb{R}^n \to \mathbb{R}^m$ which are not identically zero, that is, for every $k \in \mathbb{Z}_{>0}$ there is $x = x_k$ such that $f_k(x) \neq 0$. Show that there is x (not depending on k) such that $f_k(x) \neq 0$ for all $k \in \mathbb{Z}_{>0}$.
- 5. Let $\{f_n\}$ be a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ having the property that $\{f_n(x)\}$ is unbounded for all $x \in \mathbb{Q}$. Prove that there is at least one $x \in \mathbb{Q}^c$ such that $\{f_n(x)\}$ is unbounded.
- 6. Let (X, d) be a complete metric space and let (Y, d) be a metric space. Let $\{f_n\}$ be a sequence of continuous functions from X to Y such that $\{f_n(x)\}$ converges for every $x \in X$. Prove that for every $\varepsilon > 0$ there exist $k \in \mathbb{Z}_{>0}$ and a non-empty open subset U of X such that $d(f_n(x), f_m(x)) < \varepsilon$ for all $x \in U$ and all $n, m \ge k$.
- 7. (a) Let (X, d) be a metric space and let (f_n) be a sequence of continuous functions, $f_n : X \to \mathbb{R}$, for $n \in \mathbb{Z}_{>0}$. Define what it means for the sequence f_n to converge uniformly to $f: X \to \mathbb{R}$.
 - (a) (b)] Suppose that (f_n) is a sequence of continuous functions, $f_n: [0,1] \to \mathbb{R}$. Assume that (f_n) converges uniformly to $f:[0,1] \to \mathbb{R}$. Prove that $\int_0^x f_n(t) dt$ converges uniformly to
 - $\int_0^x f(t)dt, \text{ where } 0 \le x \le 1.$ (c) Let $f_n(x) = \frac{x^n}{1+x+x^n}$ for $x \in [0,1]$. Is the sequence (f_n) uniformly convergent on the interval [0, 1]? Give a brief justification of your answer.
- 8. Let X = C[0,1] be the set of all continuous functions $f:[0,1] \to \mathbb{R}$. Recall that the supremum metric on X is defined by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : 0 \le x \le 1\}$$

and the L^1 metric on X is defined by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| \, dx.$$

Consider the sequence $\{f_1, f_2, f_3, \ldots\}$ in X where $f_n(x) = nx^n(1-x)$ for $0 \le x \le 1$.

- (a) Determine whether $\{f_n\}$ converges in (X, d_1) .
- (b) Determine whether $\{f_n\}$ converges in (X, d_{∞}) .

(You may use any standard results about limits of real sequences.)

- 9. (a) Let (X, d) be a metric space and let $\{f_n\}$ be a sequence of continuous functions, $f_n : X \to \mathbb{R}$, for $n \in \mathbb{Z}_{>0}$. Give the definition of uniform convergence of the sequence f_n to a function $f: X \to \mathbb{R}.$
 - (b) Prove that if $\{f_n\}$ converges uniformly to $f: X \to \mathbb{R}$, then f is a continuous function.

- (c) Let $f_n(x) = \frac{1-x^n}{1+x^n}$ for $x \in [0,1]$ and $n \in \mathbb{Z}_{>0}$. Find the pointwise limit f of the sequence $\{f_n\}$. Determine whether the sequence f_n is uniformly convergent to f or not on the interval [0,1]. Give brief reasons for your answer.
- (d) Is the sequence (f_n) uniformly convergent on the interval [0, 1]?
- 10. Let (X, d_X) and (Y, d_Y) be metric spaces, and let (f_1, f_2, \ldots) be a sequence of functions: $f_n: X \to Y$ for $n \in \mathbb{Z}_{>0}$.
 - (a) Define what it means for the sequence $(f_1, f_2...)$ to converge uniformly to a function $f : X \to Y$.
 - (b) Define what it means for a function $g: X \to Y$ to be bounded.
 - (c) Prove that if each f_n is bounded and $(f_1, f_2, ...)$ converges uniformly to f, then f is also bounded.
 - (d) Define $f_n: [0,1] \to \mathbb{R}$ for each $n \in \mathbb{Z}_{>0}$ by

$$f_n(x) = \frac{nx^2}{1+nx}, \quad \text{for } x \in [0,1].$$

Find the pointwise limit f of the sequence $(f_1, f_2, ...)$ and determine whether the sequence converges uniformly to f.

23.8.5 Compactness and completeness

- 1. Show that the completion of (0, 1) with the usual metric is [0, 1] with the usual metric.
- 2. Decide if the following metric spaces are complete:
 - (a) $((0,\infty), d)$, where $d(x,y) = |x^2 y^2|$ for $x, y \in (0,\infty)$. (b) $((-\pi/2, \pi/2), d)$, where $d(x, y) = |\tan x - \tan y|$ for $x, y \in (-\pi/2, \pi/2)$.
- 3. On \mathbb{R} consider the metrics:

$$d_1(x, y) = |\arctan x - \arctan y|,$$

$$d_2(x, y) = |x^3 - y^3|.$$

With which of these metrics is \mathbb{R} complete? If (\mathbb{R}, d_i) is not complete find its completion.

- 4. Which of the following subsets of \mathbb{R} and \mathbb{R}^2 are compact? (\mathbb{R} and \mathbb{R}^2 are considered with the usual metrics).
 - (a) $A = \mathbb{Q} \cap [0, 1]$ (b) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (c) $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}\}$ (d) $D = \{(x, y) : |x| + |y| \le 1\}$ (e) $E = \{(x, y) : x \ge 1 \text{ and } 0 \le y \le 1/x\}$
- 5. Consider the following spaces:

- (a) \mathbb{R} with the metric $d_1(x,y) = \frac{|x-y|}{1+|x-y|};$
- (b) \mathbb{R} with the metric $d_2(x, y) = |\arctan x \arctan y|;$
- (c) \mathbb{R} with the metric $d_3(x, y) = 0$ if x = y and d(x, y) = 1 if $x \neq y$.

Is (\mathbb{R}, d_i) compact?

6. Consider C[0,1] with the usual d_{∞} metric. Let

$$A = \{ f \in C[0,1] \mid 0 = f(0) \le f(t) \le f(1) = 1 \text{ for all } t \in [0,1] \}$$

Show that there is no finite $\frac{1}{2}$ -net for A.

- 7. Let X = (0, 1] be equipped with the usual metric d(x, y) = |x y|. Show that (X, d) is not complete. Let $\tilde{d}(x, y) = \|\frac{1}{x} \frac{1}{y}\|$ for $x, y \in X$. Show that \tilde{d} is a metric on X that is equivalent to d, and that (X, \tilde{d}) is complete.
- 8. Which of the following maps are contractions?
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{-x};$ (b) $f: [0, \infty) \to [0, \infty), f(x) = e^{-x};$ (c) $f: [0, \infty) \to [0, \infty), f(x) = e^{-e^x};$ (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x;$
 - (e) $f : \mathbb{R} \to \mathbb{R}, f(x) = \cos(\cos x).$
- 9. Consider the map $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = \frac{1}{10}(8x + 8y, x + y), \ (x,y) \in \mathbb{R}^2.$$

Recall metrics $d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|, d_2((x_1, y_1), (x_2, y_2)) = [|x_1 - x_2|^2 + |y_1 - y_2|^2]^{1/2}$ and $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$. Is f a contraction with respect to d_1 ? d_2 ? d_{∞} ?

- 10. (a) Consider X = (0, a] with the usual metric and $f(x) = x^2$ for $x \in X$. Find values of a for which f is a contraction and show that $f : X \to X$ does not have a fixed point.
 - (b) Consider $X = [1, \infty)$ with the usual metric and let $f(x) = x + \frac{1}{x}$ for $x \in X$. Show that $f: X \to X$ and d(f(x), f(y)) < d(x, y) for all $x \neq y$, but f does not have a fixed point. Reconcile (a) and (b) with Banach fixed point theorem.
- 11. (a) State the Banach fixed point theorem. A mapping $f : \mathbb{R} \to \mathbb{R}$ is defined as a *contraction* if there exists a constant c with $0 \le c < 1$ such that $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in \mathbb{R}$.
 - (b) (1) Use (a) to show that the equation x + f(x) = a has a unique solution for each $a \in \mathbb{R}$.

- Deduce that $F: \mathbb{R} \to \mathbb{R}$ defined by F(x) = x + f(x) is a bijection. (This should be (2)easy).
- (3)
- Show that F is continuous. Show that F^{-1} is continuous. (Hence F is a homeomorphism.) (4)
- 12. Consider the map $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = \frac{1}{10}(8x + 8y, x + y).$$

Recall metrics

$$d_1((x_1, y_1), (x_2, y_2) = |x_1 - x_2| + |y_1 - y_2|,$$

$$d_2((x_1, y_1), (x_2, y_2) = (|x_1 - x_2|^2 + |y_1 - y_2|^2)^{1/2},$$

$$d_{\infty}((x_1, y_1), (x_2, y_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

If f a contraction with respect to d_1 ? d_2 ? d_∞ ? Prove that your answers are correct.

13. Let $a \in \mathbb{R}_{>0}$. Let

$$f(x) = \frac{1}{2}\left(x + \frac{a}{x}\right), \quad \text{for } x \in \mathbb{R}_{>0}.$$

- (a) Show that if $x \in \mathbb{R}_{>0}$ then $f(x) \geq \sqrt{a}$. Hence f defines a function $f: X \to X$ where $X = [\sqrt{a}, \infty).$
- (b) Show that f is a contraction mapping when X is given the usual metric.
- (c) Fix $x_0 > \sqrt{a}$ and $x_{n+1} = f(x_n)$, for $n \in \mathbb{Z}_{\geq 0}$. Show that the sequence $\{x_n\}$ converges and find its limit with respect to the usual metric on \mathbb{R} .
- 14. (a) State the Banach fixed point theorem.
 - (b) Verify that the mapping

$$f(x,y) = (\frac{x+y+1}{4}, \frac{x-y+1}{4})$$

satisfies the conditions of the Banach fixed point theorem on the metric space $(\overline{B(0,1)}, d)$, where d is the usual Euclidean metric and $\overline{B(0,1)}$ is the closed unit ball in \mathbb{R}^2 centred at the origin 0.

- (c) Find directly the unique fixed point for f.
- 15. (a) State the Banach fixed point theorem.
 - (b) Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$ Verify that the mapping $f: X \to X$ given by

$$f(x,y) = \left(\frac{1}{4}(x+y+1), \frac{1}{4}(x-y+1)\right)$$

satisfies the conditions of the Banach fixed point theorem.

(c) Find directly the unique fixed point for f.

16. (a) Show that there is exactly one continuous function $f:[0,1] \to \mathbb{R}$ which satisfies the equation

$$(f(x))^3 - e^x (f(x))^2 + \frac{f(x)}{2} = e^x.$$

(Hint: rewrite the equation as $f(x) = e^x + \frac{1}{2} \left(\frac{f(x)}{1 + f(x)^2} \right)$.) (b) Consider C[0, a] with a < 1 and $T : C[0, a] \to C[0, a]$ given by

$$(Tf)(t) = \sin t + \int_0^t f(s)ds, \ t \in [0, a].$$

Show that T is a contraction. What is the fixed point of T?

(c) Find all $f \in C[0, \pi]$ which satisfy the equation

$$3f(t) = \int_0^t \sin(t-s)f(s)ds$$

(d) Let $g \in C[0,1]$. Show that there exists exactly one $f \in C[0,1]$ which solves the equation

$$f(x) + \int_0^1 e^{x-y-1} f(y) dy = g(x), \text{ for all } x \in [0,1].$$

(Hint: Consider the metric $d(f,h) = \sup\{e^{-x}|f(x) - h(x)| \mid x \in [0,1]\}$.)

- 17. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$. Let X be a complete metric space and let $f: X \to X$ be a α -contraction. Let $x \in X$, $x_0 = x$ and $x_{n+1} = f(x_n)$, for $n \in \mathbb{Z}_{\geq 0}$.
 - (a) Show that the sequence x_0, x_1, x_2, \ldots converges in X.
 - Let $p = \lim_{n \to \infty} x_n$.
 - (b) Show that $d(x,p) \leq \frac{d(x,f(x))}{1-\alpha}$.
 - (c) Show that f(p) = p.
- 18. Let U be an open subset of \mathbb{R}^2 . Let $f: U \to \mathbb{R}$ be a continuous function which satisfies the Lipschitz condition with respect to the second variable: There exists $\alpha \in \mathbb{R}_{>0}$ such that

if
$$(x, y_1), (x, y_2) \in U$$
 then $|f(x, y_1) - f(x, y_2)| \le \alpha |y_1 - y_2|$

Show that if $(x_0, y_0) \in U$ then there exists $\delta \in \mathbb{R}_{>0}$ such that y'(x) = f(x, y(x)) has a unique solution $y: [x_0 - \delta, x_0 + \delta] \to \mathbb{R}$ such that $y(x_0) = y_0$.

19. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let

$$||f|| = \int |f|$$
 and $d(f,g) = ||f-g||$

for $f, g \in S$.

(a) Show that $\| \|: S \to \mathbb{R}_{\geq 0}$ is not a norm on S.

- (b) Show that $d: S \times S \to \mathbb{R}_{>0}$ is not a metric on S.
- 20. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{i \in \mathbb{Z}_{>0}} f_i$ be a series in S which is norm absolutely convergent. Show that there exists a full set in \mathbb{R}^k on which $\sum_{i \in \mathbb{Z}_{>0}} f_i$ converges.
- 21. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{n \in \mathbb{Z}_{>0}} f_k$ be a series in S which is norm absolutely convergent. Show that $\sum_{n \in \mathbb{Z}_{>0}} f_n = 0$ almost everywhere if and only if the limit of the norms of the partial sums of f_n converge to 0.
- 22. Let L^1 be the set of functions which are equal almost everywhere to limits of norm absolutely convergent series in S, where S is the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Define

$$||f|| = \int f$$
 and $d(f,g) = ||f-g||$, for $f,g \in L'$.

- (a) Show that $\| \|: L^1 \to \mathbb{R}_{\geq 0}$ is a norm on L^1 . (b) Show that $d: L^1 \times L^1 \to \mathbb{R}_{\geq 0}$ is a metric on L^1 .
- 23. Let I be a closed and bounded interval in \mathbb{R} . Let x_1, x_2, x_3, \ldots be a sequence in I. Show that there exists a subsequence $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ of x_1, x_2, x_3, \ldots such that $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ converges in I.
- 24. Let $X = \mathbb{R}$ with metric given by d(x, y) = |x y|.
 - (a) Let A = X. Show that A is Cauchy compact but not bounded.
 - (b) Let A = X. Show that A is Cauchy compact but not cover compact.
 - (c) Let A = X. Show that A is Cauchy compact but not ball compact.
 - (d) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not closed in X.
 - (e) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not cover compact.
 - (f) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not Cauchy compact.
 - (h) Let $A = (0,1) \subset X$ and let B = A. Show that B is closed in A but B is not Cauchy compact.
 - (g) Let $Y = \mathbb{R}$ with metric given by $\rho(x, y) = \min\{|x y|, 1\}$ and let A = Y. Show that A is bounded but not ball compact.
- 25. Let $(0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$ with the standard metric. Show that X is not complete, is totally bounded and is not cover compact.

26. Let $C([0,1],\mathbb{R}) = \{f: [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ and let $d(f,g) = \sup\{|f(x)-g(x)| \mid x \in [0,1]\}.$

- (a) Show that $d: C([0,1],\mathbb{R}) \times C([0,1],\mathbb{R})$ is a metric on $C([0,1,\mathbb{R})$.
- (b) Let $A = \overline{B}_1(0) = \{f \in C([0,1],\mathbb{R}) \mid d(f,0) \leq 1\}$. Show that A is closed and bounded.
- (c) Show that A is not compact.

- 27. Let $K \subseteq \mathbb{R}$. Show that K is compact if and only if K is closed and bounded.
- 28. Let X be a compact metric space. Let $f: X \to \mathbb{R}$ be a continuous function. Show that f attains a maximum and a minimum value.
- 29. Let $f: X \to \mathbb{R}$. The function f is upper semicontinuous if f satisfies

if $r \in \mathbb{R}$ then $\{x \in X \mid f(x) < r\}$ is open.

The function f is *lower semicontinuous* if f satisfies

if $r \in \mathbb{R}$ then $\{x \in X \mid f(x) > r\}$ is open.

Assume that X is compact. Show that every upper semicontinuous function assumes a maximum value and every lower semicontinuous function assumes a minimum value.

- 30. Let $X = \mathbb{R}$ with metric given by $d(x, y) = \min\{|x y|, 1\}$.
 - (a) Show that X is bounded.
 - (b) Show that X is not totally bounded.

31. Let $X = [0, 2\pi)$ and $Y = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let

 $f: [0, 2\pi) \to S^1$ be given by $f(x) = (\cos x, \sin x).$

- (a) Show that f is continuous.
- (b) Show that f is a bijection.
- (c) Show that $f^{-1}: S^1 \to [0, 2\pi)$ is not continuous.

23.8.6 Connectedness

- 1. Let X_1 and X_2 be the subspaces of \mathbb{R} given by $X_1 = \mathbb{R} \{0\}$ and $X_2 = \mathbb{Q}$. Show that X_1 and X_2 are disconnected.
- 2. Let $A = (-\infty, 0)$ and $B = (0, \infty)$ as subsets of \mathbb{R} . Show that A is connected, B is connected and $A \cup B$ is not connected.
- 3. Show that a subset of \mathbb{R} is connected if and only if it is an interval.
- 4. Carefully state the Intermediate Value Theorem.
- 5. State and prove the Intermediate Value Theorem.

- 6. Let X be a connected topological space and let $f: X \to \mathbb{R}$ be a continuous function. Show that if $x, y \in X$ and $r \in \mathbb{R}$ such that $f(x) \leq r \leq f(y)$ then there exists $c \in X$ such that f(c) = r.
- 7. Let $X = \{(t, \sin(\pi t)) \mid t \in (0, 2]\}.$
 - (a) Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$ be given by $\varphi(x, y) = x$. Show that $\varphi \colon X \to (0, 2]$ is a homeomorphism.
 - (b) Show that X is connected.
 - (c) Show that \overline{X} is connected.
 - (d) Show that \overline{X} is not path connected.

bigskip

8. Which of the following sets X are connected in \mathbb{R}^2 ?

(a) Let
$$H = \{(x, y) \in \mathbb{R}^2 \mid xy = 1 \text{ and } x, y > 0\}, L = \{(x, 0) \mid x \in \mathbb{R}\}, \text{ and } X = H \cup L;$$

(b) Let
$$C_n = \{(x,y) \in \mathbb{R}^2 \mid (x-1/n)^2 + y^2 = 1/n^2\}$$
 for $n \in \mathbb{Z}$, and $X = \bigcup_{n \in \mathbb{Z}_{>0}} C_n$.

- 9. Show that no two of the intervals (a, b), (a, b], and [a, b] are homeomorphic.
- 10. Show that \mathbb{R} and \mathbb{R}^2 are not homeomorphic (where \mathbb{R} and \mathbb{R}^2 are equipped with the usual topologies).
- 11. Let $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and $B = \{(x, y) \in \mathbb{R}^2 : (x 2)^2 + y^2 < 1\}$. Determine whether $X = A \cup B$, $Y = \overline{A} \cup \overline{B}$ and $Z = \overline{A} \cup B$ are connected subsets of \mathbb{R}^2 with the usual topology.
- 12. Let X be a connected topological space and let $f : X \to \mathbb{R}$ be a continuous function, where \mathbb{R} has the usual topology. Show that if f takes only rational values, i.e. $f(X) \subseteq \mathbb{Q}$, then f is a constant function.
- 13. Show that $X = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ is not homeomorphic to \mathbb{R} (with the usual topologies). [Hint: consider the effect of removing points from X and \mathbb{R} .]
- 14. Let $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and $B = \{(x, y) \in \mathbb{R}^2 : (x 2)^2 + y^2 < 1\}$. Determine whether $X = A \cup B$, $Y = \overline{A} \cup \overline{B}$ and $Z = \overline{A} \cup B$ are connected subsets of \mathbb{R}^2 with the usual topology.
- 15. Let X be a connected topological space and let $f : X \to \mathbb{R}$ be a continuous function, where \mathbb{R} has the usual topology. Show that if f takes only rational values, i.e. $f(X) \subseteq \mathbb{Q}$, then f is a constant function.
- 16. Explain why the following pairs of topological spaces are *not* homeomorphic. (Each has the topology induced from the usual embedding into a Euclidean space).

- (a) \mathbb{R} and S^1 , where S^1 is the unit circle $\{(x, y) : x^2 + y^2 = 1\}$.
- (b) $(0, \infty)$ and (0, 1].
- (c) $A = \{(0, y) : y \in \mathbb{R}\} \cup \{(x, 0) : x \in \mathbb{R}\}, B = \{(0, y) : y \in \mathbb{R}, y \ge 0\} \cup \{(x, 0) : x \in \mathbb{R}\}.$
- 17. Prove that no two of the following spaces are homeomorphic:
 - (i) X = [-1, 1] with the topology induced from \mathbb{R} ;
 - (ii) $Y = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with the topology induced from \mathbb{R}^2 ; (iii) $Z = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ with the topology induced from \mathbb{R}^2 .
- 18. Show that $X = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ is not homeomorphic to \mathbb{R} .

19. Let

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \text{ and } B = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 < 1\}.$$

Determine, with proof, whether $X = A \cup B$, $Y = \overline{A} \cup \overline{B}$ and $Z = \overline{A} \cup B$ are connected subsets of \mathbb{R}^2 with the usual topology.

- 20. Show that \mathbb{Q} , with the standard topology, is totally disconnected (i.e. each connected component contains only one point).
- 21. (a) Let (X, d_X) and (Y, d_Y) be a metric spaces and let $f: X \to Y$ be a function. Let $E \subseteq X$. Prove that if $f: X \to Y$ is continuous and E is connected then f(E) is connected.
 - (b) Carefully state the intermediate value theorem.
 - (c) Prove the intermediate value theorem.