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24 Problem list: New spaces from old

24.1 Subspaces

1. (restrictions of continuous functions are continuous) Let (X,7T) be a topological space and let
A C X with the subspace topology. Let f: X — Y be a continuous function. Show that

g A —> Y

o = fla) 1S continuous.

2. (The subspace topology) Let (X,7T) be a topological space and let Y be a subset of X. The
subspace topology on Y is
Ty ={UNY |UeT}.

Show that 7Ty is a topology on Y.

3. (characterizing the subspace topology by continuity) Let (X,7) be a topological space and let
Y C X be a subset. Show that the subspace topology on Y is the minimal topology on Y such
that the inclusion

i Y — X
y — Yy

is continuous.

4. (The subspace uniformity) Let (X, X’) be a uniform space and let Y be a subset of X. The
subspace uniformity on Y is

Xy ={VA(Y xY)|Vex)

Show that Xy is a uniformity on Y.

5. (characterizing the subspace uniformity by uniform continuity) Let (X, X)) be a uniform space
and let Y C X be a subset. Show that the subspace uniformity on Y is the minimal uniformity
on Y such that the inclusion

i Y — X . . .
is uniformly continuous.
y — y

6. (A subspace of a vector space) Let X be a K-vector space. A subspace of X is a subset V C X

such that

(a) If v1,v9 € V then v1 + vy €V,
(b) If v eV and ¢ € K then cv € V.

Show that V' with the same operations of addition and scalar multiplication as in X is a vector
space.

7. (A subspace of a normed vector space is a normed vector space) Let X be a normed vector space.
Let V C X be a subspace. Show that V is a normed vector space with the same norm.

8. (A subset of a metric space is a metric space) Let (X, d) be a metric space. Let Y C X be a
subset. Show that (Y, d) is a metric space.
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24.2 Products

1. (characterizing the product topology by continuous functions) Let (X,7) and (Y, Q) be topo-
logical spaces. Show that the product topology on X X Y is the minimal topology such that the
functions

pri: X XY — X prog: X XY — Y

and

are continuous.
(z,y) = = (z,y) = y

2. (characterizing the product uniformity by uniformly continuous functions) Let (X, X) and (Y,))
be uniform spaces. Show that the product uniformity on X x Y is the minimal uniformity such
that the functions

pri: X xY — X and prag: X xY — Y

are uniformly continuous.
(z,y) = = (z,y)

3. (products of continuous functions are continuous) Let fi: X7 — Y7 and fo: X2 — Y5 be contin-
uous functions. Show that the function f; x fo given by

f1><f2: X1 x X9 — Y1 x Y,
(1,22) = (fi(z1), fa(z2))

1s continuous.

4. (The product topology) Let (X,7) and (Y, Q) be topological spaces. Let X xY = {(z,y) | z €
X,y € Y}. The product topology on X x Y is

the topology Txxy generated by {UxV |UeT,Ve g}
Show that B={U xV | U € T,V € Q} is a base of the topology Txxy .
5. (An open set in the product topology is not necessarily a product of open sets) Let X = R and

Y =R so that X x Y = R% Let Z = B1((2,2)) be the ball of radius one centered at the point
(2,2) in R2. show that there do not exist open sets U and V in R such that Z =U x V.

6. (Metrics that produce the product topology) Let (X1,d;) and (Xa,ds) be metric spaces. Let
Y = X; x X5 and define

d((z1,22), (y1,y2)) = di(z1,y1) + d2(x2, y2),
p((x17x2)7 (ylva)) = max{dl(why1)7d2(x27y2)}7

o((z1,22), (Y1,y2)) = \/ﬁll(fﬂlayl)2 + da(2,y2)?

(a) Show that (Y,d), (Y, p) and (Y, o) are metric spaces.
(b) Show that (Y,d), (Y, p) and (Y, o) are the same as topological spaces.
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7. (direct sums of vector spaces) Let X and Y be K-vector spaces. The direct sum of X and Y is
the K-vector space X @Y given by the set X x Y with addition and scalar multiplication given
by

(@1,51) + (22,92) = (T1 + 22,91 +42)  and  c(z,y) = (cz,cy),

for x, 21,29 € X, y,y1,y2 € Y and ¢ € K. Show that X &Y is a K-vector space.

8. (Norms that produce the product topology) Let (X, || ||x) and (Y, || ||y) be normed vector spaces.
Define functions || - ||1: X @Y = R, || [2: X®Y - Rspand || [|c: X BY — R>g by

Il = lzlx +lylly, @yl =/lzI% + 1yl and

1, y)lloo = max{|z]x, [[ylly}-

(a) Show that (X @Y, [1), (X DY, | |l2) and (X ®Y,| - |l) are normed vector spaces. (See
\Bre, Ch. 2 Ex. 2].)

(b) Show that (X @Y, |- [1), (X @Y,| -|2) and (X @Y, | - ||c) are the same as topological
spaces. (See |Bre, Ch. 5 Ex. 2].)

24.3 The space B(V,W) of bounded linear operators

1. (B(V,W) is a normed vector space) Let V and W be normed vector spaces. Show that

B(V,W) = {linear transformations T: V. — W | ||T|| < oo} where

T
HTH:sup{”UH|v€Vandv7é0},

o]

is a normed vector space.

2. (If W is complete then B(V, W) is complete) Let V' and W be normed vector spaces and let
B(V,W) be the vector space of bounded linear operators from V to W with norm given by
_ [T]]
|T|| = sup |veVandv#0¢, for T € B(V,W).

o]l

Show that if W is complete then B(V, W) is complete.

3. (duals of normed vector spaces are complete) Let V' with || ||: V' — R>g be a normed vector
space. Show that V*, the dual of V, is complete.

4. (for linear operators, finite norm and uniformly continuous and continuous are all equivalent)
Let V and W be normed vector spaces. Let T: V' — W be a linear transformation from V to
W. Show that the following are equivalent.

(a) [T < oo
(b) T:V — W is uniformly continuous.
(¢) T:V — W is continuous.
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5. (closed graph condition for continuity) Let X and Y be Banach spaces and let A: X — Y be a
linear transformation.

If Th={(z,A(x))|xz€ X}isclosedin X xY then A is continuous.

6. (limits and inverses of bounded linear operators) Let X and Y be Banach space.

(a) Let (A1, Aq,...) be a sequence of bounded linear operators from X to Y such that

ifr € X then lim A,(x) exists. Define A(x) = lim A, (z).

n—oo n—o0

Show that A: X — Y is a bounded linear transformation.

(b) If A: X — Y is a bijective bounded linear transformation then

A~1:Y — X is a bounded linear transformation.

7. (Baire category theorem, open dense version) Let (X, d) be a complete metric space. Show that
if Uy,Us,Us, ... are open dense subsets of X

then m U,, is dense in X.

TLGZ>0

8. (uniform boundedness) Let X and Y be Banach spaces. Let 7 C B(X,Y’). Then
sup{||[Al| | A € F} < >0 or there exists a dense set S C X

such that
if x €S then sup{||A(z)]| A€ F}=oc.

9. (open mapping) Let X and Y be Banach spaces. Let A: X — Y be a surjective bounded linear
operator. Then A satisfies

if U is an open set in X then A(U) is an open set in Y.

10. (bounded on the unit ball implies uniformly bounded) Let X and Y be Banach spaces and let
F C B(X,Y). Show that if F satisfies

ifx e X and ||z]] <1 then sup{||A(z)]]| A€ F}<oo

then
sup { sup{[|[A(z)| | lz[| <1} | A € F} < .
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24.4 Function spaces and sequences of functions
1. (If Y is complete then bounded continuous functions from X to Y is complete) Let (X, dx) and
(Y, dy) be metric spaces and let
BC(X,Y)={f: X =Y | fis continuous and f(X) is bounded in Y},
with doo: BC(X,Y) x BC(X,Y) — R>q given by
doo(f, 9) = sup{dy (f(z),9(2)) | x € X}.

(a) Show that BC(X,Y) is a metric space.
(b) Show that if Y is a complete metric space then BC(X,Y) is a complete metric space.

2. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let
B(X)={f: X = R | f(X) is bounded},
with metric doo: B(X) x B(X) — Rx>g given by
doo(f,9) = sup{|f(z) — g(x)[ | = € X}.

Show that B(X) is a complete metric space.

3. (sequences of functions) Let (X, d) and (C, p) be metric spaces. Let
F = {functions f: X — C'} and define d: F x F — R>oU{oo} by

doo(f,9) = sup{p(f(x), 9(x)) | 2 € X}.

(Warning d is not quite a metric since its target is not R>¢.) Let
(f1, f2,...) be asequence in ' and let f: X — C

be a function.

The sequence (f1, fa,...) in F' converges pointwise to f if the sequence (f1, fo,...) satisfies

if x € X and € € Ry then there exists £ € Z~( such that
if n € Z>y then d(f,(z), f(z)) <e.

The sequence (f1, fa,...) in F' converges uniformly to f if the sequence (fi, fa,...) satisfies

if € € Ry then there exists ¢ € Z~¢ such that
if z € X and n € Z>, then d(f,(z), f(x)) < e.

(a) Show that (fi, fa,...) converges pointwise to f if and only if (fi, f2,...) satisfies
ifx € X then ILm d(fn(z), f(z)) = 0.
(b) Show that (f1, f2,...) converges uniformly to f if and only if (fi, f2,...) satisfies

nh—>nolo doo(fns f) = 0.
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4. (uniform convergence implies pointwise convergence) Let (X, d) and (C, p) be metric spaces. Let
F = {functions f: X — C} and define dy: F x F — R>oU{oo} by
doo(f, ) = sup{p(f(x),9(x)) | = € X}.
(Warning d is not quite a metric since its target is not R>¢.) Let
(f1, f2,...) be a sequence in ' and let f: X — C

be a function.

The sequence (f1, f2,...) in F' converges pointwise to f if the sequence (f1, fa,...) satisfies

ifx € X then nlLIEO d(fn(x), f(z)) =0.

The sequence (f1, fa,...) in F' converges uniformly to f if the sequence (fi, fo,...) satisfies
lim doo(fn, f) =0.
n—oo

Show that if (f1, fa,...) converges uniformly to f then (fi, f2,...) converges pointwise to f.

5. (pointwise convergence does not imply uniform convergence) Let (X,d) and (C,p) be metric

spaces. Let
F = {functions f: X — C}, (f1, f2,...) a sequence in F

and let f: X — C be a function.

(a) Show that if (f1, fa,...) converges uniformly to f then (fi, f2,...) converges pointwise to

f.
(b) Let X =C =Ry ={z € R |0 <z <1} with metric given by d(z,y) = p(z,y) = |x — y|.
For n € Z~¢ let

fnt Rppy — Ry

T -~ - and let f: R[O,l] — R[O’H

be given by

0, f0<z<l,
xr) =
/(@) {17 if x = 1.

Show that (f1, fa,...) converges pointwise to f but does not converge uniformly to f.

GRAPH f1, fo, f3, fa and f

6. (uniformly convergent sequences of continuous functions have continuous limits) Let (X, d) and
(C, p) be metric spaces. Let

F = {functions f: X — C} and define do: F' X F' — R>o U {oco} by

doo(f,9) = sup{p(f(2), 9(x)) | 2 € X}.
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(Warning d is not quite a metric since its target is not R>g.) Let
(f1, f2,...) be a sequence in ' and let f: X — C

be a function.

The sequence (f1, f2,...) in F' converges uniformly to f if the sequence (f1, fo,...) satisfies

im_doo(fr, f) = 0.

Show that if fi, fa,... are all continuous and (fi, f2,...) converges uniformly to f then f is
continuous.

7. (the pointwise limit of continuous functions is not necessarily continuous) Let (X, d) and (C, p)
be metric spaces. Let
F = {functions f: X — C}, (f1, f2,...) a sequence in F,

and let f: X — C be a function.

The sequence (f1, fa,...) in F' converges pointwise to f if the sequence (f1, fo,...) satisfies

if z€ X then nh_)nolo d(fn(z), f(x)) =0.

Show that if fi, fo,... are all continuous and (fi, fa,...) converges pointwise to f then f is not
necessarily continuous.
24.5 Additional sample exam questions

24.5.1 Subspaces

1. Let X be a topological space and let Y C X with the subspace topology. Show that

(a) BCY isopeninY if and only if B=Y N A for some set A C X which is open in X.
(b) B CY isclosed in Y if and only if there exists /' C X closed in X such that B=Y N F.

2. Let X, Y be topological spaces and let f: X — Y be a continuous function. Let A C X. Show
that the restriction of f to A, fl4a: A — Y is continuous.

24.5.2 Products

1. Let (X1,d1),...,(Xn,d,) be metric spaces. Define the product metric d on X; x Xo x --- x X,
and show that (X7 x --- x X,,,d) is a metric space.

2. Let (X1,d1),...,(Xy,dy) be metric spaces. Show that a sequence T, = (m%l), .. ,m,(f)) in X7 x

-+ x Xy converges if and only if each of the sequences x£§ ) (in X;) converges.
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3. Let (X1,d1),...,(Xp, dg) be metric spaces and let (X7 x - - - X Xy, d) be the product metric space.
Let o: (X1 x -+ X Xp) x (X7 x -+ x Xy) — R be given by

o(x,y) = max{d;(z;,y;) | 1 <i <L}

Show that ¢ is a metric on X7 X --- X Xy and d is equivalent to o.

4. Let (X1,d1),...,(Xy,d) be metric spaces and let (X7 X - - - X Xy, d) be the product metric space.
Let p: (X1 X+ x Xp) x (X1 X -+-x Xy) = R be given by

1
2

¢
p(z,y) = (Z dz‘(fﬂz’,yi)2>
i=1
Show that p is a metric on X; X --- X Xy and d is equivalent to p.

5. Let Xy,..., X, be topological spaces and let X7 X --- x Xy have the product topology. Show
that

(a) If Ay C X4,...,A; C Xy are open then Ay x --- x Ay C X3 x --- X Xy is open.
(b) If Fy C Xy,...,Fy C X/ are closed then F} x -+ x Fy C X1 x --- X is closed.

6. Let (X1,d1),. .., (X, dg) be metric spaces and let d be the product metric on X; x - -+ x X,. Show
that the metric space topology on (X; X -+ x Xy, d) is the product topology for X x -+ x Xy,
where X7,..., Xy have the metric space topology.

7. Let (X,d), (Y1,p1) and (Y2, p2) be metric spaces. Let f: X — Y] and ¢g: X — Y3 be functions.
Define h: X — Y7 x Ys by h(z) = (f(x),g(x)). Let a € X. Show that A is continuous if and
only if f and g are continuous at a.

X — XxX T = (x,ac)
lfxg I
Yi x Vs (f(z),9(z))

8. Let (X,d), (Y1,p1) and (Y2, p2) be metric spaces. Let f: X — Y] and ¢g: X — Y3 be functions.
Define h: X — Y7 x Y3 by h(z) = (f(x),g(x)). Let a € X. Show that h is continuous if and
only if f and g are continuous.

9. Give an example of metric spaces X, Y and Z and a function f: X x Y — Z such that

(a) if z € X then bo - Z is continuous,
= flz,y)
ry: X — Z
b) if y € Y then Y is continuous,
(®) iy - f)

(¢) f: X XY — Z is not continuous.
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10.

11.

12.

13.

14.

Let (X;,d;) be a metric space for 1 <i <n and let X =[], X;. Define

d(z,y) = Lz:; di(xi, y¢)2] 1/2,

d(x’y) = maX{dz‘@h%) ’ 1<i< TL},

where z = (71,...,2,) and y = (y1,...,yn) € X. Verify that d and d are metrics on X.

Let (X,,,dp), n € Zso, be a sequence of metric spaces and let X = Hn€Z>O X, be the cartesian
product of the X,,’s. (The elements of X are of the form x = (x1,x9,...) with =, € X,,.) For

x,y € X, define
— 1 dn(Tn, Yn)
d = — | In) )
(z,y) ; on <1+dn($n,yn)>
Show that (X, d) is a metric space.

Sketch the open ball B(0,1) in the metric space (R?,d;), where d; is defined by

di(z,y) = |v1 — 1| + |22 — yo| + |23 — ¥3|
da(z,y) = /(21 — y1)2 + (22 — y2)® + (23 — y3)?
doo(2,y) = max{|z1 — y1], |v2 — yol, |3 — y3[}.

for # = (21,22, 23) and y = (y1,42,y3) € R>.
Let X = R2. For 2 = (v1,22) and y = (y1,y2) € X define

dM(.TJ y): |5L'2—y2’, iffClzyh
’ |21 = y1| + |z2| + |y2|, if 71 # y1.

Also define
di(z,y) = |z =yl if z = ty for some t € R;
’ llz|| + llyl| otherwise.

where ||z| = (Z?:l x?)l/ 2, (Can you give reasonable interpretations of the metrics dj; and
dg?)
Study the convergence of the sequence z,, in the spaces (X, dys) and (X, dg) if

(a) In = (%7 #)7

n n
(b) @n = (n+1’ n—l—l)’

Let (X,dx) and (Y, dy) be metric spaces and A, B are dense subsets of X and Y, respectively.
Show that A x B is dense in X x Y.
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15. Let (X, dx) and (Y, dy) be metric spaces and let (X x Y, d) be the product metric space. Show
that if A C X and B C Y are dense subsets then A x B is dense in X x Y. Is it true that if U is
dense in X x Y then p(U) is dense in X and p/(U) is dense in Y, where p, p’ are the projections
of X xY to the two factors X, Y respectively? Prove this or give a counterexample.

16. Let (X, dx) and (Y, dy) be metric spaces and let (X x Y, d) be the product metric space. Show
that if A C X and B CY, then

Ax B=AXB.

17. A topological space X is defined as locally connected if given any point x € X and an open set
V € X with x € V we can find a connected open set U C V with z € U.

(a) Show that if X is locally connected, then all the connected components of X are open.
(b) Show that any open subset A C X, where X is a vector space with a norm, is locally
connected.

18. (a) Let (X,d) and (Y,d') be metric spaces. Show that d*((z,y), (u,v)) = d(xz,u) + d'(y,v)
defines a metric on X x Y.
(b) Prove that the map f : (X,d) — (X x Y,d*) given by x — (z,y0) is an isometry from X
to f(X).
(¢) Use (b) to deduce that if (X,d) and (Y,d’) are connected spaces, then (X x Y,d*) is a
connected space. (Hint: If X x Y = U UV with U,V disjoint, open, show that f(X) C U
or f(X) C V. Repeat for different points yp.)

19. Let X and Y be topological spaces. Let A C X and B C Y. Show that

Ax B=AXxB.

20. Prove that if X and Y are path connected then X x Y is also path connected.

21. Let (X,7) and (Y,U) be topological spaces and let X x Y have the product topology.

(a) Show that if E C X then E¢ = (E°)¢ and (E°)° = (E)°.

(b) Let E be a open set in X. Show that E is a dense subset of X if and only if £ is nowhere
dense in X.

(c) Let Uy, Us, ... be open dense subsets of X. Show that U U; is dense in X if and only if

1€Z>0
m (U;)€ has empty interior.

1€Z>0

(d) Show that an open set in X x Y cannot be expected to be of the form A x B with A open
in X and B open in Y.

(e) Show that if A C X and B CY then

AxB=AxB and A°x B°=(Ax B)°.
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24.5.3 Function spaces

1. Let X be a nonempty set. Define the set of bounded functions B(X,R) and the sup norm on
B(X,R). Show that B(X,R), with this norm, is a normed vector space.

2. Let a,b € R with a < b. Define the set of continuous functions C([a,b],R) and the L'-norm on
C([a,b],R). Show that C([a,b],R), with this norm, is a normed vector space.

3. Let a,b € R with a < b. Show that the set Chq([a,b]),R) of bounded continuous functions is a
metric subspace of C([a,b],R) with the L'-norm.

4. Let X be a topological space and let f: X — R and g: X — R be continuous functions.

) Show that f + g is continuous.
) Show that f - ¢ is continuous.

) Show that f — g is continuous.
)

(a
(b
(a
(d) Show that if g satisfies if x € X then g(x) #0 then f/g is continuous.

5. Let (X,d) and (Y,d’) be metric spaces and let Cy(X,Y) be the set of bounded continuous

functions f: X — Y with the metric p: Cp(X,Y) x Cp(X,Y) — R>( given by

p(f,g9) = sup{d'(f(z),g(x)) | z € X}.

Show that (Cy(X,Y), p) is a metric space.

6. Let S be the set of linear combinations of step functions f: R¥ — R. Let

|f||=/|f| and  d(f.g) = |If — gl

for f,g € S.

(a) Show that || ||: S — Rx>g is not a norm on S.
(b) Show that d: S x S — R is not a metric on S.

7. Let S be the set of linear combinations of step functions f: R¥ — R. Let Ziez” fi be a series
in S which is norm absolutely convergent. Show that there exists a full set in R¥ on which

> icz., fi converges.

8. Let S be the set of linear combinations of step functions f: R¥ — R. Let Zn€Z>o fr be a series
in S which is norm absolutely convergent. Show that Znez>o fn = 0 almost everywhere if and
only if the limit of the norms of the partial sums of f,, converge to 0.
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9.

10.

11.

12.

13.

14.

15.

Let L' be the set of functions which are equal almost everywhere to limits of norm absolutely
convergent series in S, where S is the set of linear combinations of step functions f: R¥ — R.
Define

Mﬂz/f and  d(f,g)=|f —gl, for frge L.

(a) Show that || ||: L' — R>q is a norm on L.
(b) Show that d: L! x L' — Rs¢ is a metric on L*.

Let X = C[0,1]. Let F: X — R be defined by F(f) = f(0). Moreover, let doo(f,g9) =

sup{| f(z) — g(x)| | = € [0,1]} and dy(f,9) = [, |f(x) — g(x)|da.
Is F' continuous when X is equipped with (a) the metric ds, (b) the metric d;?

Which of the following sequences of functions converge uniformly on the interval [0, 1]?

(a) fulw) = na*(1 - )"
(b) fule) =n2a(l — )"
(©) falw) = n2de

Let {fx} be a sequence of linear maps fi: R™ — R™ which are not identically zero, that is, for
every k € Z~g there is © = xj, such that fi(x) # 0. Show that there is z (not depending on k)
such that fi(x) # 0 for all k € Z~o.

Let {f,} be a sequence of continuous functions f,,: R — R having the property that {f,(z)} is
unbounded for all z € Q. Prove that there is at least one z € Q° such that { f,,(x)} is unbounded.

Carefully define B(V, W) and prove that if W is complete then B(V,W) is complete.

(sequences of functions) Let (X, d) and (C, p) be metric spaces. Let
F = {functions f: X — C} and define do: F' X F — R>oU{oco} by

doo(f, ) = sup{p(f(x), 9(x)) | = € X}.
(Warning d is not quite a metric since its target is not R>¢.) Let
(f1, f2,...) be asequence in F' andlet f: X —C
be a function.

The sequence (f1, f2,...) in F' converges pointwise to f if the sequence (f1, fo,...) satisfies

if x € X and € € Ry then there exists N € Z~ such that
if n € Z>py then d(fn(x), f(x)) <.

The sequence (f1, fa,...) in F' converges uniformly to f if the sequence (fi, fa,...) satisfies

if € € Ry then there exists N € Z~ such that
if x € X and n € Z>n then p(f,(x), f(z)) <.
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(a) Show that (fi, f2,...) converges pointwise to f if and only if (fi, f2,...) satisfies
if € X then nh_)rgo p(fu(z), f(z)) = 0.
(b) Show that (fi, f2,...) converges uniformly to f if and only if (fi, fo,...) satisfies
1 doc(fu. f) = 0.

16. Let (X, dx) and (Y, dy) be metric spaces, and let (f1, f2,...) be a sequence of functions: f,: X —
Y for n € Zsy.

(a) Define what it means for the sequence (f1, f2...) to converge uniformly to a function f :
X =Y.

(b) Define what it means for a function g: X — Y to be bounded.

(c) Prove that if each f, is bounded and (f1, fa,...) converges uniformly to f, then f is also
bounded.

(d) Define f, : [0,1] — R for each n € Z~¢ by

TL[L‘2

x) = )
fn(2) 1+ nx
Find the pointwise limit f of the sequence (f1, fo,...) and determine whether the sequence
converges uniformly to f.

for x € [0,1].

17. (a) Let (X, d) be a metric space and let { f,,} be a sequence of continuous functions, f, : X — R,
for n € Z~g. Give the definition of uniform convergence of the sequence f, to a function
f: X —=R.
(b) Prove that if {f,} converges uniformly to f : X — R, then f is a continuous function.

(€) Let fult) = 1

{fn}. Determine whether the sequence f,, is uniformly convergent to f or not on the interval
[0,1]. Give brief reasons for your answer.
(d) Is the sequence (fy,) uniformly convergent on the interval [0, 1]?

for z € [0,1] and n € Z~¢. Find the pointwise limit f of the sequence

18. (a) Let (X, d) be a metric space and let (f,,) be a sequence of continuous functions, f, : X — R,
for n € Z~g. Define what it means for the sequence f,, to converge uniformly to f : X — R.
(a) (b)] Suppose that (fy,) is a sequence of continuous functions, f, : [0,1] — R. Assume that
(fn) converges uniformly to f : [0,1] — R. Prove that fo fn(t)dt converges uniformly to
Jo f()dt, where 0 <z < 1.

(c) Let fn( ) = mfw

interval [0,1]? Give a brief justification of your answer.

for x € [0,1]. Is the sequence (f,) uniformly convergent on the

19. Let X = C[0,1] = {f: [0,1] = R | f is continuous}. The supremum metric doo: X x X — R>q
and the L' metric dj: X x X — R>¢ are defined by

doo(f,9) = sup{|f(z) — g(x)| | z € [0,1]}  and

/ f(2) - g()| da.

Consider the sequence {fi1, f2, f3,...} in X where f,(z) =nz"(1 —z) for 0 <z < 1.
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(a) Determine whether {f,} converges in (X,d;).
(b) Determine whether {f,} converges in (X, ds).

20. Determine whether the following sequences of functions converge uniformly.

2

fule) = e @€ [0,1);
gn(x) =€ " n e [0, 1].
In 6*12/", z e R.
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