24 Problem list: New spaces from old

24.1 Subspaces

1. (restrictions of continuous functions are continuous) Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ with the subspace topology. Let $f: X \to Y$ be a continuous function. Show that

 $\begin{array}{rcccc} g \colon & A & \to & Y \\ & a & \mapsto & f(a) \end{array} \quad \text{ is continuous.} \end{array}$

2. (The subspace topology) Let (X, \mathcal{T}) be a topological space and let Y be a subset of X. The subspace topology on Y is

$$\mathcal{T}_Y = \{ U \cap Y \mid U \in \mathcal{T} \}.$$

Show that \mathcal{T}_Y is a topology on Y.

3. (characterizing the subspace topology by continuity) Let (X, \mathcal{T}) be a topological space and let $Y \subseteq X$ be a subset. Show that the subspace topology on Y is the minimal topology on Y such that the inclusion

4. (The subspace uniformity) Let (X, \mathcal{X}) be a uniform space and let Y be a subset of X. The subspace uniformity on Y is

$$\mathcal{X}_Y = \{ V \cap (Y \times Y) \mid V \in \mathcal{X} \}.$$

Show that \mathcal{X}_Y is a uniformity on Y.

5. (characterizing the subspace uniformity by uniform continuity) Let (X, \mathcal{X}) be a uniform space and let $Y \subseteq X$ be a subset. Show that the subspace uniformity on Y is the minimal uniformity on Y such that the inclusion

- 6. (A subspace of a vector space) Let X be a K-vector space. A subspace of X is a subset $V \subseteq X$ such that
 - (a) If $v_1, v_2 \in V$ then $v_1 + v_2 \in V$,
 - (b) If $v \in V$ and $c \in \mathbb{K}$ then $cv \in V$.

Show that V with the same operations of addition and scalar multiplication as in X is a vector space.

- 7. (A subspace of a normed vector space is a normed vector space) Let X be a normed vector space. Let $V \subseteq X$ be a subspace. Show that V is a normed vector space with the same norm.
- 8. (A subset of a metric space is a metric space) Let (X, d) be a metric space. Let $Y \subseteq X$ be a subset. Show that (Y, d) is a metric space.

24.2 Products

- 1. (characterizing the product topology by continuous functions) Let (X, \mathcal{T}) and (Y, \mathcal{Q}) be topological spaces. Show that the product topology on $X \times Y$ is the minimal topology such that the functions
- 2. (characterizing the product uniformity by uniformly continuous functions) Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be uniform spaces. Show that the product uniformity on $X \times Y$ is the minimal uniformity such that the functions

3. (products of continuous functions are continuous) Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be continuous functions. Show that the function $f_1 \times f_2$ given by

$$\begin{array}{ccccc} f_1 \times f_2 \colon & X_1 \times X_2 & \longrightarrow & Y_1 \times Y_2 \\ & & (x_1, x_2) & \longmapsto & (f_1(x_1), f_2(x_2)) \end{array} \quad \text{is continuous.}$$

4. (The product topology) Let (X, \mathcal{T}) and (Y, \mathcal{Q}) be topological spaces. Let $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. The product topology on $X \times Y$ is

the topology $\mathcal{T}_{X \times Y}$ generated by $\{U \times V \mid U \in \mathcal{T}, V \in \mathcal{Q}\}.$

Show that $\mathcal{B} = \{U \times V \mid U \in \mathcal{T}, V \in \mathcal{Q}\}$ is a base of the topology $\mathcal{T}_{X \times Y}$.

- 5. (An open set in the product topology is not necessarily a product of open sets) Let $X = \mathbb{R}$ and $Y = \mathbb{R}$ so that $X \times Y = \mathbb{R}^2$. Let $Z = B_1((2,2))$ be the ball of radius one centered at the point (2,2) in \mathbb{R}^2 . show that there do not exist open sets U and V in \mathbb{R} such that $Z = U \times V$.
- 6. (Metrics that produce the product topology) Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let $Y = X_1 \times X_2$ and define

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2),$$

$$\rho((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\},$$

$$\sigma((x_1, x_2), (y_1, y_2)) = \sqrt{d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2}$$

- (a) Show that (Y, d), (Y, ρ) and (Y, σ) are metric spaces.
- (b) Show that (Y, d), (Y, ρ) and (Y, σ) are the same as topological spaces.

7. (direct sums of vector spaces) Let X and Y be K-vector spaces. The *direct sum* of X and Y is the K-vector space $X \oplus Y$ given by the set $X \times Y$ with addition and scalar multiplication given by

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and c(x, y) = (cx, cy),

for $x, x_1, x_2 \in X$, $y, y_1, y_2 \in Y$ and $c \in \mathbb{K}$. Show that $X \oplus Y$ is a K-vector space.

8. (Norms that produce the product topology) Let $(X, || ||_X)$ and $(Y, || ||_Y)$ be normed vector spaces. Define functions $|| \cdot ||_1 \colon X \oplus Y \to \mathbb{R}_{\geq 0}, || \cdot ||_2 \colon X \oplus Y \to \mathbb{R}_{\geq 0}$ and $|| \cdot ||_\infty \colon X \oplus Y \to \mathbb{R}_{\geq 0}$ by

$$\|(x,y)\|_{1} = \|x\|_{X} + \|y\|_{Y}, \qquad \|(x,y)\|_{2} = \sqrt{\|x\|_{X}^{2} + \|y\|_{Y}^{2}}, \qquad \text{and}$$
$$\|(x,y)\|_{\infty} = \max\{\|x\|_{X}, \|y\|_{Y}\}.$$

- (a) Show that $(X \oplus Y, \|\cdot\|_1)$, $(X \oplus Y, \|\cdot\|_2)$ and $(X \oplus Y, \|\cdot\|_\infty)$ are normed vector spaces. (See Bre, Ch. 2 Ex. 2].)
- (b) Show that $(X \oplus Y, \|\cdot\|_1)$, $(X \oplus Y, \|\cdot\|_2)$ and $(X \oplus Y, \|\cdot\|_\infty)$ are the same as topological spaces. (See Bre, Ch. 5 Ex. 2].)

24.3 The space B(V, W) of bounded linear operators

1. (B(V, W)) is a normed vector space) Let V and W be normed vector spaces. Show that

$$B(V,W) = \{ \text{linear transformations } T \colon V \to W \mid ||T|| < \infty \} \quad \text{where}$$
$$||T|| = \sup \left\{ \frac{||Tv||}{||v||} \mid v \in V \text{ and } v \neq 0 \right\},$$

is a normed vector space.

2. (If W is complete then B(V, W) is complete) Let V and W be normed vector spaces and let B(V, W) be the vector space of bounded linear operators from V to W with norm given by

$$||T|| = \sup\left\{\frac{||Tv||}{||v||} \mid v \in V \text{ and } v \neq 0\right\}, \quad \text{for } T \in B(V, W).$$

Show that if W is complete then B(V, W) is complete.

- 3. (duals of normed vector spaces are complete) Let V with $\| \|: V \to \mathbb{R}_{\geq 0}$ be a normed vector space. Show that V^* , the dual of V, is complete.
- 4. (for linear operators, finite norm and uniformly continuous and continuous are all equivalent) Let V and W be normed vector spaces. Let $T: V \to W$ be a linear transformation from V to W. Show that the following are equivalent.
 - (a) $||T|| < \infty$.
 - (b) $T: V \to W$ is uniformly continuous.
 - (c) $T: V \to W$ is continuous.

5. (closed graph condition for continuity) Let X and Y be Banach spaces and let $\Lambda: X \to Y$ be a linear transformation.

If $\Gamma_{\Lambda} = \{(x, \Lambda(x)) \mid x \in X\}$ is closed in $X \times Y$ then Λ is continuous.

- 6. (limits and inverses of bounded linear operators) Let X and Y be Banach space.
 - (a) Let $(\Lambda_1, \Lambda_2, \ldots)$ be a sequence of bounded linear operators from X to Y such that

if $x \in X$ then $\lim_{n \to \infty} \Lambda_n(x)$ exists. Define $\Lambda(x) = \lim_{n \to \infty} \Lambda_n(x)$.

Show that $\Lambda \colon X \to Y$ is a bounded linear transformation.

(b) If $\Lambda: X \to Y$ is a bijective bounded linear transformation then

 $\Lambda^{-1}: Y \to X$ is a bounded linear transformation.

7. (Baire category theorem, open dense version) Let (X, d) be a complete metric space. Show that if U_1, U_2, U_3, \ldots are open dense subsets of X

then
$$\bigcap_{n \in \mathbb{Z}_{>0}} U_n$$
 is dense in X.

8. (uniform boundedness) Let X and Y be Banach spaces. Let $\mathcal{F} \subseteq B(X, Y)$. Then

 $\sup\{\|\Lambda\| \mid \Lambda \in \mathcal{F}\} < \infty \qquad \text{or there exists a dense set } S \subseteq X$

such that

if $x \in S$ then $\sup\{\|\Lambda(x)\| \mid \Lambda \in \mathcal{F}\} = \infty$.

9. (open mapping) Let X and Y be Banach spaces. Let $\Lambda: X \to Y$ be a surjective bounded linear operator. Then Λ satisfies

if U is an open set in X then $\Lambda(U)$ is an open set in Y.

10. (bounded on the unit ball implies uniformly bounded) Let X and Y be Banach spaces and let $\mathcal{F} \subseteq \mathcal{B}(X, Y)$. Show that if \mathcal{F} satisfies

if $x \in X$ and $||x|| \le 1$ then $\sup\{||\Lambda(x)|| \mid \Lambda \in \mathcal{F}\} < \infty$

then

$$\sup\left\{\sup\{\|\Lambda(x)\| \mid \|x\| \le 1\} \mid \Lambda \in \mathcal{F}\right\} < \infty.$$

24.4 Function spaces and sequences of functions

1. (If Y is complete then bounded continuous functions from X to Y is complete) Let (X, d_X) and (Y, d_Y) be metric spaces and let

$$\mathcal{BC}(X,Y) = \{f \colon X \to Y \mid f \text{ is continuous and } f(X) \text{ is bounded in } Y\},\$$

with $d_{\infty} \colon \mathcal{BC}(X,Y) \times \mathcal{BC}(X,Y) \to \mathbb{R}_{\geq 0}$ given by

$$d_{\infty}(f,g) = \sup\{d_Y(f(x),g(x)) \mid x \in X\}.$$

- (a) Show that $\mathcal{BC}(X, Y)$ is a metric space.
- (b) Show that if Y is a complete metric space then $\mathcal{BC}(X,Y)$ is a complete metric space.
- 2. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let

$$B(X) = \{ f \colon X \to \mathbb{R} \mid f(X) \text{ is bounded} \},\$$

with metric $d_{\infty} \colon B(X) \times B(X) \to \mathbb{R}_{\geq 0}$ given by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in X\}.$$

Show that B(X) is a complete metric space.

3. (sequences of functions) Let (X, d) and (C, ρ) be metric spaces. Let

$$F = \{ \text{functions } f \colon X \to C \}$$
 and define $d_{\infty} \colon F \times F \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ by

 $d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geq 0}$.) Let

 (f_1, f_2, \dots) be a sequence in F and let $f: X \to C$

be a function.

The sequence $(f_1, f_2, ...)$ in F converges pointwise to f if the sequence $(f_1, f_2, ...)$ satisfies

if $x \in X$ and $\epsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $d(f_n(x), f(x)) < \epsilon$.

The sequence $(f_1, f_2, ...)$ in F converges uniformly to f if the sequence $(f_1, f_2, ...)$ satisfies

if $\epsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $x \in X$ and $n \in \mathbb{Z}_{\geq \ell}$ then $d(f_n(x), f(x)) < \epsilon$.

(a) Show that (f_1, f_2, \ldots) converges pointwise to f if and only if (f_1, f_2, \ldots) satisfies

if
$$x \in X$$
 then $\lim_{n \to \infty} d(f_n(x), f(x)) = 0$

(b) Show that $(f_1, f_2, ...)$ converges uniformly to f if and only if $(f_1, f_2, ...)$ satisfies

$$\lim_{n \to \infty} d_{\infty}(f_n, f) = 0.$$

4. (uniform convergence implies pointwise convergence) Let (X, d) and (C, ρ) be metric spaces. Let

 $F = \{ \text{functions } f \colon X \to C \}$ and define $d_{\infty} \colon F \times F \to \mathbb{R}_{\geq 0} \cup \{ \infty \}$ by

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geq 0}$.) Let

 (f_1, f_2, \dots) be a sequence in F and let $f: X \to C$

be a function.

The sequence $(f_1, f_2, ...)$ in F converges pointwise to f if the sequence $(f_1, f_2, ...)$ satisfies

if
$$x \in X$$
 then $\lim_{n \to \infty} d(f_n(x), f(x)) = 0.$

The sequence $(f_1, f_2, ...)$ in F converges uniformly to f if the sequence $(f_1, f_2, ...)$ satisfies

$$\lim_{n \to \infty} d_{\infty}(f_n, f) = 0.$$

Show that if $(f_1, f_2, ...)$ converges uniformly to f then $(f_1, f_2, ...)$ converges pointwise to f.

5. (pointwise convergence does not imply uniform convergence) Let (X, d) and (C, ρ) be metric spaces. Let

 $F = \{ \text{functions } f \colon X \to C \}, \quad (f_1, f_2, \dots) \text{ a sequence in } F$

and let $f: X \to C$ be a function.

- (a) Show that if $(f_1, f_2, ...)$ converges uniformly to f then $(f_1, f_2, ...)$ converges pointwise to f.
- (b) Let $X = C = \mathbb{R}_{[0,1]} = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ with metric given by $d(x,y) = \rho(x,y) = |x-y|$. For $n \in \mathbb{Z}_{>0}$ let

$$\begin{array}{rccc} f_n \colon & \mathbb{R}_{[0,1]} & \to & \mathbb{R}_{[0,1]} \\ & x & \mapsto & x^n \end{array} \quad \text{ and let } f \colon \mathbb{R}_{[0,1]} \to \mathbb{R}_{[0,1]} \end{array}$$

be given by

$$f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x = 1. \end{cases}$$

Show that $(f_1, f_2, ...)$ converges pointwise to f but does not converge uniformly to f.

GRAPH
$$f_1, f_2, f_3, f_4$$
 and f

6. (uniformly convergent sequences of continuous functions have continuous limits) Let (X, d) and (C, ρ) be metric spaces. Let

$$F = \{ \text{functions } f \colon X \to C \} \text{ and define } d_{\infty} \colon F \times F \to \mathbb{R}_{\geq 0} \cup \{ \infty \} \text{ by}$$
$$d_{\infty}(f,g) = \sup \{ \rho(f(x),g(x)) \mid x \in X \}.$$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geq 0}$.) Let

 (f_1, f_2, \dots) be a sequence in F and let $f: X \to C$

be a function.

The sequence $(f_1, f_2, ...)$ in F converges uniformly to f if the sequence $(f_1, f_2, ...)$ satisfies

$$\lim_{n \to \infty} d_{\infty}(f_n, f) = 0.$$

Show that if f_1, f_2, \ldots are all continuous and (f_1, f_2, \ldots) converges uniformly to f then f is continuous.

7. (the pointwise limit of continuous functions is not necessarily continuous) Let (X, d) and (C, ρ) be metric spaces. Let

 $F = \{ \text{functions } f \colon X \to C \}, \qquad (f_1, f_2, \dots) \text{ a sequence in } F,$

and let $f: X \to C$ be a function.

The sequence $(f_1, f_2, ...)$ in F converges pointwise to f if the sequence $(f_1, f_2, ...)$ satisfies

if $x \in X$ then $\lim_{n \to \infty} d(f_n(x), f(x)) = 0.$

Show that if f_1, f_2, \ldots are all continuous and (f_1, f_2, \ldots) converges pointwise to f then f is not necessarily continuous.

24.5 Additional sample exam questions

24.5.1 Subspaces

- 1. Let X be a topological space and let $Y \subseteq X$ with the subspace topology. Show that
 - (a) $B \subseteq Y$ is open in Y if and only if $B = Y \cap A$ for some set $A \subseteq X$ which is open in X.
 - (b) $B \subseteq Y$ is closed in Y if and only if there exists $F \subseteq X$ closed in X such that $B = Y \cap F$.
- 2. Let X, Y be topological spaces and let $f: X \to Y$ be a continuous function. Let $A \subseteq X$. Show that the restriction of f to A, $f|_A: A \to Y$ is continuous.

24.5.2 Products

- 1. Let $(X_1, d_1), \ldots, (X_n, d_n)$ be metric spaces. Define the product metric d on $X_1 \times X_2 \times \cdots \times X_n$ and show that $(X_1 \times \cdots \times X_n, d)$ is a metric space.
- 2. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces. Show that a sequence $\overline{x_n} = (x_n^{(1)}, \ldots, x_n^{(\ell)})$ in $X_1 \times \cdots \times X_\ell$ converges if and only if each of the sequences $x_n^{(i)}$ (in X_i) converges.

3. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let $(X_1 \times \cdots \times X_\ell, d)$ be the product metric space. Let $\sigma: (X_1 \times \cdots \times X_\ell) \times (X_1 \times \cdots \times X_\ell) \to \mathbb{R}$ be given by

$$\sigma(x, y) = \max\{d_i(x_i, y_i) \mid 1 \le i \le \ell\}.$$

Show that σ is a metric on $X_1 \times \cdots \times X_\ell$ and d is equivalent to σ .

4. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let $(X_1 \times \cdots \times X_\ell, d)$ be the product metric space. Let $\rho: (X_1 \times \cdots \times X_\ell) \times (X_1 \times \cdots \times X_\ell) \to \mathbb{R}$ be given by

$$\rho(x,y) = \left(\sum_{i=1}^{\ell} d_i(x_i, y_i)^2\right)^{\frac{1}{2}}.$$

Show that ρ is a metric on $X_1 \times \cdots \times X_\ell$ and d is equivalent to ρ .

- 5. Let X_1, \ldots, X_ℓ be topological spaces and let $X_1 \times \cdots \times X_\ell$ have the product topology. Show that
 - (a) If $A_1 \subseteq X_1, \ldots, A_\ell \subseteq X_\ell$ are open then $A_1 \times \cdots \times A_\ell \subseteq X_1 \times \cdots \times X_\ell$ is open.
 - (b) If $F_1 \subseteq X_1, \ldots, F_\ell \subseteq X_\ell$ are closed then $F_1 \times \cdots \times F_\ell \subseteq X_1 \times \cdots \times X_\ell$ is closed.
- 6. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let d be the product metric on $X_1 \times \cdots \times X_\ell$. Show that the metric space topology on $(X_1 \times \cdots \times X_\ell, d)$ is the product topology for $X_1 \times \cdots \times X_\ell$, where X_1, \ldots, X_ℓ have the metric space topology.
- 7. Let (X, d), (Y_1, ρ_1) and (Y_2, ρ_2) be metric spaces. Let $f: X \to Y_1$ and $g: X \to Y_2$ be functions. Define $h: X \to Y_1 \times Y_2$ by h(x) = (f(x), g(x)). Let $a \in X$. Show that h is continuous if and only if f and g are continuous at a.

- 8. Let (X, d), (Y_1, ρ_1) and (Y_2, ρ_2) be metric spaces. Let $f: X \to Y_1$ and $g: X \to Y_2$ be functions. Define $h: X \to Y_1 \times Y_2$ by h(x) = (f(x), g(x)). Let $a \in X$. Show that h is continuous if and only if f and g are continuous.
- 9. Give an example of metric spaces X, Y and Z and a function $f: X \times Y \to Z$ such that
 - (a) if $x \in X$ then $\begin{array}{ccc} \ell_x \colon & Y \to & Z \\ & y \mapsto & f(x,y) \end{array}$ is continuous, (b) if $y \in Y$ then $\begin{array}{ccc} r_y \colon & X \to & Z \\ & x \mapsto & f(x,y) \end{array}$ is continuous, (c) $f \colon X \times Y \to Z$ is not continuous.

10. Let (X_i, d_i) be a metric space for $1 \le i \le n$ and let $X = \prod_{i=1}^n X_i$. Define

$$d(x,y) = \left[\sum_{i=1}^{n} d_i (x_i, y_i)^2\right]^{1/2},$$

$$\overline{d}(x,y) = \max\{d_i (x_i, y_i) \mid 1 \le i \le n\},$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n) \in X$. Verify that d and \overline{d} are metrics on X.

11. Let (X_n, d_n) , $n \in \mathbb{Z}_{>0}$, be a sequence of metric spaces and let $X = \prod_{n \in \mathbb{Z}_{>0}} X_n$ be the cartesian product of the X_n 's. (The elements of X are of the form $x = (x_1, x_2, \ldots)$ with $x_n \in X_n$.) For $x, y \in X$, define

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} \right)$$

Show that (X, d) is a metric space.

12. Sketch the open ball B(0,1) in the metric space (\mathbb{R}^3, d_i) , where d_i is defined by

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|$$

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|\}.$$

for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3) \in \mathbb{R}^3$.

13. Let $X = \mathbb{R}^2$. For $x = (x_1, x_2)$ and $y = (y_1, y_2) \in X$ define

$$d_M(x,y) = \begin{cases} |x_2 - y_2|, & \text{if } x_1 = y_1, \\ |x_1 - y_1| + |x_2| + |y_2|, & \text{if } x_1 \neq y_1. \end{cases}$$

Also define

$$d_K(x,y) = \begin{cases} \|x-y\| & \text{if } x = ty \text{ for some } t \in \mathbb{R}; \\ \|x\| + \|y\| & \text{otherwise.} \end{cases}$$

where $||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$. (Can you give reasonable interpretations of the metrics d_M and d_K ?)

Study the convergence of the sequence x_n in the spaces (X, d_M) and (X, d_K) if

(a)
$$x_n = (\frac{1}{n}, \frac{n}{n+1});$$

(b) $x_n = (\frac{n}{n+1}, \frac{n}{n+1});$
(c) $x_n = (\frac{1}{n}, \sqrt{n+1} - \sqrt{n}).$

14. Let (X, d_X) and (Y, d_Y) be metric spaces and A, B are dense subsets of X and Y, respectively. Show that $A \times B$ is dense in $X \times Y$.

- 15. Let (X, d_X) and (Y, d_Y) be metric spaces and let $(X \times Y, d)$ be the product metric space. Show that if $A \subseteq X$ and $B \subseteq Y$ are dense subsets then $A \times B$ is dense in $X \times Y$. Is it true that if U is dense in $X \times Y$ then p(U) is dense in X and p'(U) is dense in Y, where p, p' are the projections of $X \times Y$ to the two factors X, Y respectively? Prove this or give a counterexample.
- 16. Let (X, d_X) and (Y, d_Y) be metric spaces and let $(X \times Y, d)$ be the product metric space. Show that if $A \subseteq X$ and $B \subseteq Y$, then

$$\overline{A} \times \overline{B} = \overline{A \times B}.$$

- 17. A topological space X is defined as *locally connected* if given any point $x \in X$ and an open set $V \subset X$ with $x \in V$ we can find a connected open set $U \subset V$ with $x \in U$.
 - (a) Show that if X is locally connected, then all the connected components of X are open.
 - (b) Show that any open subset $A \subset X$, where X is a vector space with a norm, is locally connected.
- 18. (a) Let (X, d) and (Y, d') be metric spaces. Show that $d^*((x, y), (u, v)) = d(x, u) + d'(y, v)$ defines a metric on $X \times Y$.
 - (b) Prove that the map $f: (X, d) \to (X \times Y, d^*)$ given by $x \to (x, y_0)$ is an isometry from X to f(X).
 - (c) Use (b) to deduce that if (X, d) and (Y, d') are connected spaces, then $(X \times Y, d^*)$ is a connected space. (Hint: If $X \times Y = U \cup V$ with U, V disjoint, open, show that $f(X) \subset U$ or $f(X) \subset V$. Repeat for different points y_0 .)
- 19. Let X and Y be topological spaces. Let $A \subseteq X$ and $B \subseteq Y$. Show that

$$\overline{A} \times \overline{B} = \overline{A \times B}.$$

- 20. Prove that if X and Y are path connected then $X \times Y$ is also path connected.
- 21. Let (X,\mathcal{T}) and (Y,\mathcal{U}) be topological spaces and let $X \times Y$ have the product topology.
 - (a) Show that if $E \subseteq X$ then $\overline{E^c} = (E^\circ)^c$ and $(E^c)^\circ = (\overline{E})^c$.
 - (b) Let E be a open set in X. Show that E is a dense subset of X if and only if E^c is nowhere dense in X.
 - (c) Let U_1, U_2, \ldots be open dense subsets of X. Show that $\bigcup_{i \in \mathbb{Z}_{>0}} U_i$ is dense in X if and only if

 $\bigcap_{i \in \mathbb{Z}_{>0}} (U_i)^c \text{ has empty interior.}$

- (d) Show that an open set in $X \times Y$ cannot be expected to be of the form $A \times B$ with A open in X and B open in Y.
- (e) Show that if $A \subseteq X$ and $B \subseteq Y$ then

$$\overline{A} \times \overline{B} = \overline{A \times B}$$
 and $A^{\circ} \times B^{\circ} = (A \times B)^{\circ}$.

24.5.3 Function spaces

- 1. Let X be a nonempty set. Define the set of bounded functions $B(X, \mathbb{R})$ and the sup norm on $B(X, \mathbb{R})$. Show that $B(X, \mathbb{R})$, with this norm, is a normed vector space.
- 2. Let $a, b \in \mathbb{R}$ with a < b. Define the set of continuous functions $C([a, b], \mathbb{R})$ and the L^1 -norm on $C([a, b], \mathbb{R})$. Show that $C([a, b], \mathbb{R})$, with this norm, is a normed vector space.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that the set $C_{bd}([a, b]), \mathbb{R})$ of bounded continuous functions is a metric subspace of $C([a, b], \mathbb{R})$ with the L^1 -norm.
- 4. Let X be a topological space and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions.
 - (a) Show that f + g is continuous.
 - (b) Show that $f \cdot g$ is continuous.
 - (a) Show that f g is continuous.
 - (d) Show that if g satisfies if $x \in X$ then $g(x) \neq 0$ then f/g is continuous.
- 5. Let (X, d) and (Y, d') be metric spaces and let $C_b(X, Y)$ be the set of bounded continuous functions $f: X \to Y$ with the metric $\rho: C_b(X, Y) \times C_b(X, Y) \to \mathbb{R}_{\geq 0}$ given by

$$\rho(f,g) = \sup\{d'(f(x),g(x)) \mid x \in X\}.$$

Show that $(C_b(X, Y), \rho)$ is a metric space.

6. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let

$$||f|| = \int |f|$$
 and $d(f,g) = ||f - g||,$

for $f, g \in S$.

- (a) Show that $\| \|: S \to \mathbb{R}_{>0}$ is not a norm on S.
- (b) Show that $d: S \times S \to \mathbb{R}_{>0}$ is not a metric on S.
- 7. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{i \in \mathbb{Z}_{>0}} f_i$ be a series in S which is norm absolutely convergent. Show that there exists a full set in \mathbb{R}^k on which $\sum_{i \in \mathbb{Z}_{>0}} f_i$ converges.
- 8. Let S be the set of linear combinations of step functions $f : \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{n \in \mathbb{Z}_{>0}} f_k$ be a series in S which is norm absolutely convergent. Show that $\sum_{n \in \mathbb{Z}_{>0}} f_n = 0$ almost everywhere if and only if the limit of the norms of the partial sums of f_n converge to 0.

9. Let L^1 be the set of functions which are equal almost everywhere to limits of norm absolutely convergent series in S, where S is the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Define

$$||f|| = \int f$$
 and $d(f,g) = ||f - g||$, for $f, g \in L^1$.

- (a) Show that $\| \| : L^1 \to \mathbb{R}_{\geq 0}$ is a norm on L^1 .
- (b) Show that $d: L^1 \times L^1 \to \mathbb{R}_{>0}$ is a metric on L^1 .
- 10. Let X = C[0,1]. Let $F: X \to \mathbb{R}$ be defined by F(f) = f(0). Moreover, let $d_{\infty}(f,g) = d_{\infty}(f,g)$ $\sup\{|f(x) - g(x)| \mid x \in [0, 1]\}$ and $d_1(f, g) = \int_0^1 |f(x) - g(x)| dx$. Is F continuous when X is equipped with (a) the metric d_∞ , (b) the metric d_1 ?
- 11. Which of the following sequences of functions converge uniformly on the interval [0, 1]?
 - (a) $f_n(x) = nx^2(1-x)^n$ (b) $f_n(x) = n^2x(1-x^2)^n$ (c) $f_n(x) = n^2x^3e^{-nx^2}$

(c)
$$f_n(x) = n^2 x^3 e^{-x}$$

- 12. Let $\{f_k\}$ be a sequence of linear maps $f_k \colon \mathbb{R}^n \to \mathbb{R}^m$ which are not identically zero, that is, for every $k \in \mathbb{Z}_{>0}$ there is $x = x_k$ such that $f_k(x) \neq 0$. Show that there is x (not depending on k) such that $f_k(x) \neq 0$ for all $k \in \mathbb{Z}_{>0}$.
- 13. Let $\{f_n\}$ be a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ having the property that $\{f_n(x)\}$ is unbounded for all $x \in \mathbb{Q}$. Prove that there is at least one $x \in \mathbb{Q}^c$ such that $\{f_n(x)\}$ is unbounded.
- 14. Carefully define B(V, W) and prove that if W is complete then B(V, W) is complete.
- 15. (sequences of functions) Let (X, d) and (C, ρ) be metric spaces. Let

 $F = \{ \text{functions } f \colon X \to C \}$ and define $d_{\infty} \colon F \times F \to \mathbb{R}_{>0} \cup \{ \infty \}$ by

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}$$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geq 0}$.) Let

$$(f_1, f_2, \dots)$$
 be a sequence in F and let $f: X \to C$

be a function.

The sequence (f_1, f_2, \ldots) in F converges pointwise to f if the sequence (f_1, f_2, \ldots) satisfies

if
$$x \in X$$
 and $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that
if $n \in \mathbb{Z}_{\geq N}$ then $d(f_n(x), f(x)) < \epsilon$.

The sequence (f_1, f_2, \ldots) in F converges uniformly to f if the sequence (f_1, f_2, \ldots) satisfies

if $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $x \in X$ and $n \in \mathbb{Z}_{>N}$ then $\rho(f_n(x), f(x)) < \epsilon$. (a) Show that $(f_1, f_2, ...)$ converges pointwise to f if and only if $(f_1, f_2, ...)$ satisfies

 $\lim_{n \to \infty} \rho(f_n(x), f(x)) = 0.$ $\text{if } x \in X \quad \text{ then } \quad$

(b) Show that (f_1, f_2, \ldots) converges uniformly to f if and only if (f_1, f_2, \ldots) satisfies

$$\lim_{n \to \infty} d_{\infty}(f_n, f) = 0$$

- 16. Let (X, d_X) and (Y, d_Y) be metric spaces, and let (f_1, f_2, \ldots) be a sequence of functions: $f_n: X \to X$ Y for $n \in \mathbb{Z}_{>0}$.
 - (a) Define what it means for the sequence $(f_1, f_2...)$ to converge uniformly to a function f: $X \to Y.$
 - (b) Define what it means for a function $g: X \to Y$ to be bounded.
 - (c) Prove that if each f_n is bounded and (f_1, f_2, \ldots) converges uniformly to f, then f is also bounded.
 - (d) Define $f_n: [0,1] \to \mathbb{R}$ for each $n \in \mathbb{Z}_{>0}$ by

$$f_n(x) = \frac{nx^2}{1+nx}, \quad \text{for } x \in [0,1]$$

Find the pointwise limit f of the sequence $(f_1, f_2, ...)$ and determine whether the sequence converges uniformly to f.

- 17. (a) Let (X, d) be a metric space and let $\{f_n\}$ be a sequence of continuous functions, $f_n : X \to \mathbb{R}$, for $n \in \mathbb{Z}_{>0}$. Give the definition of uniform convergence of the sequence f_n to a function $f: X \to \mathbb{R}.$

 - (b) Prove that if $\{f_n\}$ converges uniformly to $f: X \to \mathbb{R}$, then f is a continuous function. (c) Let $f_n(x) = \frac{1-x^n}{1+x^n}$ for $x \in [0,1]$ and $n \in \mathbb{Z}_{>0}$. Find the pointwise limit f of the sequence $\{f_n\}$. Determine whether the sequence f_n is uniformly convergent to f or not on the interval [0, 1]. Give brief reasons for your answer.
 - (d) Is the sequence (f_n) uniformly convergent on the interval [0,1]?
- 18. (a) Let (X, d) be a metric space and let (f_n) be a sequence of continuous functions, $f_n : X \to \mathbb{R}$, for $n \in \mathbb{Z}_{>0}$. Define what it means for the sequence f_n to converge uniformly to $f: X \to \mathbb{R}$.
 - (a) (b)] Suppose that (f_n) is a sequence of continuous functions, $f_n: [0,1] \to \mathbb{R}$. Assume that (f_n) converges uniformly to $f:[0,1] \to \mathbb{R}$. Prove that $\int_0^x f_n(t) dt$ converges uniformly to
 - $\int_0^x f(t)dt$, where $0 \le x \le 1$. (c) Let $f_n(x) = \frac{x^n}{1+x+x^n}$ for $x \in [0,1]$. Is the sequence (f_n) uniformly convergent on the interval [0, 1]? Give a brief justification of your answer.
- 19. Let $X = C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$. The supremum metric $d_{\infty} \colon X \times X \to \mathbb{R}_{\geq 0}$ and the L^1 metric $d_1 \colon X \times X \to \mathbb{R}_{\geq 0}$ are defined by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in [0,1]\} \text{ and} \\ d_{1}(f,g) = \int_{0}^{1} |f(x) - g(x)| \, dx.$$

Consider the sequence $\{f_1, f_2, f_3, \ldots\}$ in X where $f_n(x) = nx^n(1-x)$ for $0 \le x \le 1$.

- (a) Determine whether $\{f_n\}$ converges in (X, d_1) . (b) Determine whether $\{f_n\}$ converges in (X, d_{∞}) .

20. Determine whether the following sequences of functions converge uniformly.

- (a) $f_n(x) = e^{-nx^2}, x \in [0, 1];$ (b) $g_n(x) = e^{-x^2/n}, x \in [0, 1].$ (c) $g_n(x) = e^{-x^2/n}, x \in \mathbb{R}.$