21 Problem List: Spaces

21.1 The Cauchy-Schwarz and triangle inequalities

1. (Cauchy-Schwarz and the triangle inequality) Let (V, \langle, \rangle) be a positive definite inner product space. The *length norm* on V is the function

 $\begin{array}{lll} V & \to & \mathbb{R}_{\geq 0} \\ v & \mapsto & \|v\| & \end{array} \text{ given by } & \|v\|^2 = \langle v, v \rangle. \end{array}$

Show that

- (a) If $x, y \in V$ then $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
- (b) If $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.
- 2. (Pythagorean theorem) Let (V, \langle, \rangle) be a positive definite inner product space. The *length norm* on V is the function

$$\begin{array}{ll} V & \to & \mathbb{R}_{\geq 0} \\ v & \mapsto & \|v\| \end{array} \quad \text{given by} \quad \|v\|^2 = \langle v, v \rangle. \end{array}$$

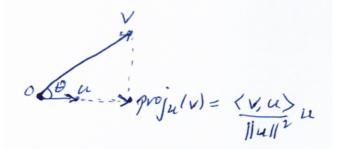
Show that

if $x, y \in V$ and $\langle x, y \rangle = 0$ then $||x||^2 + ||y||^2 = ||x + y||^2$.

3. (angles and projections) Let (V, \langle, \rangle) be a inner product space and let $u, v \in V$. The angle between v and u is $\theta \in [0, 2\pi)$ defined by

$$\cos(\theta) = \frac{\langle v, u \rangle}{\|v\| \|u\|}$$
 and $\operatorname{proj}_u(v) = \langle v, \frac{u}{\|u\|} \rangle \frac{u}{\|u\|}$

is the orthogonal projection of v onto u.



- (a) Use the Cauchy-Schwarz inequality to show that $0 \le \cos(\theta) < 1$ and show that $\|\operatorname{proj}_u(v)\| = \cos(\theta) \cdot \|v\|$.
- (b) Let W be a finite dimensional subspace of V and let $\{u_1, \ldots, u_k\}$ be an orthonormal basis of W. The orthogonal projection of v onto the subspace W is

$$\operatorname{proj}_W(v) = \langle v, u_1 \rangle u_1 + \dots + \langle v, u_k \rangle u_k.$$

Show that $\operatorname{proj}_W(v)$ is independent of the choice of orthonormal basis.

4. Let (V, \langle , \rangle) be a positive definite inner product space. The length norm on V is the function

$$\begin{array}{lll} V & \to & \mathbb{R}_{\geq 0} \\ v & \mapsto & \|v\| \end{array} \quad \text{given by} \quad \|v\|^2 = \langle v, v \rangle.$$

- (a) (The Cauchy-Schwarz inequality) Show that if $x, y \in V$ then $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
- (b) (The triangle inequality) Show that if $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.
- (c) (The Pythagorean theorem) Show that

if
$$x, y \in V$$
 and $\langle x, y \rangle = 0$ then $||x||^2 + ||y||^2 = ||x + y||^2$.

(d) (The parallelogram law) Show that

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$.

(e) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{R} such that $\| \| : V \to \mathbb{R}_{\geq 0}$ satisfies

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$,

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{R}$ given by

$$\langle x, y \rangle = \frac{1}{2}(\|x+y\|^2 - \|x\|^2 - \|y\|^2) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

is a positive definite symmetric inner product space such that $||v||^2 = \langle v, v \rangle$. To prove that $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$, first establish the identity

$$||x_1 + x_2 + y|| = ||x_1||^2 + ||x_2||^2 + ||x_1 + y||^2 + ||x_2 + y||^2 - \frac{1}{2}||x_1 + y - x_2||^2 - \frac{1}{2}||x_2 + y - x_1||^2$$

To prove that $\langle cx, y \rangle = \lambda cx, y \rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$.

(f) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{C} and $\| \| : V \to \mathbb{R}_{\geq 0}$ satisfies

 $\text{if } x,y \in V \text{ then } \quad \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2,$

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{C}$ given by

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

is a positive definite Hermitian inner product space such that $||v||^2 = \langle v, v \rangle$.

21.2 Relating types of spaces

1. (positive definite inner product spaces are normed vector spaces) Let (V, \langle, \rangle) be a positive definite inner product space. The *length norm* on V is the function

$$\begin{array}{lll} V & \to & \mathbb{R}_{\geq 0} \\ v & \mapsto & \|v\| & \end{array} \quad \text{given by} \quad \|v\|^2 = \langle v, v \rangle. \end{array}$$

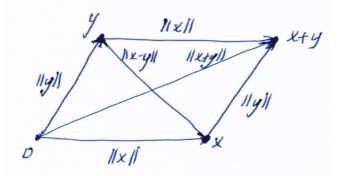
Show that (V, || ||) is a normed vector space.

2. (inner product spaces from normed vector spaces: the parallelogram law)

(a) Let (V, \langle, \rangle) be a inner product space and let $\| \| : V \to \mathbb{R}_{\geq 0}$ be given by $\|v\|^2 = \langle v, v \rangle$. Show that

if $x, y \in V$ then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

(the sum of the squared lengths of the edges is the sum of the squared lengths of the daigonals).



(b) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{R} such that $\| \| \colon V \to \mathbb{R}_{\geq 0}$ satisfies

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$,

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{K}$ given by

$$\langle x, y \rangle = \frac{1}{2}(\|x+y\|^2 - \|x\|^2 - \|y\|^2) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

is a positive definite symmetric inner product space such that $||v||^2 = \langle v, v \rangle$. To prove that $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$, first establish the identity

$$||x_1 + x_2 + y|| = ||x_1||^2 + ||x_2||^2 + ||x_1 + y||^2 + ||x_2 + y||^2 - \frac{1}{2}||x_1 + y - x_2||^2 - \frac{1}{2}||x_2 + y - x_1||^2.$$

To prove that $\langle cx, y \rangle = c \langle x, y \rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$. (See Bred Ch. 5 Ex. 3].)

(c) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{C} such that $\| \| : V \to \mathbb{R}_{\geq 0}$ satisfies

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$,

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{C}$ given by

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

is a positive definite Hermitian inner product space such that $||v||^2 = \langle v, v \rangle$. (See Ru, Ch. 4 Ex. 11].)

3. (normed vector spaces are metric spaces) Let $(V, \parallel \parallel)$ be a normed vector space. The norm *metric* on V is the function

$$d \colon V \times V \to \mathbb{R}_{\geq 0} \qquad \text{given by} \qquad d(x,y) = \|x-y\|.$$

Show that (V, d) is a metric space.

- 4. (uniformity of a pseudometric) Let X be a set. A pseudometric on X is a function $f: X \times X \to \mathbb{R}_{>0} \cup \{\infty\}$ such that
 - (a) If $x \in X$ then d(x, x) = 0,
 - (b) If $x, y \in X$ then d(x, y) = d(y, x),
 - (c) If $x, y, z \in X$ then $d(x, y) \le d(x, z) + d(z, y)$.

Show that the sets

$$B_{\epsilon} = \{ (x, y) \in X \times X \mid d(x, y) < \epsilon \}, \quad \text{for } \epsilon \in \mathbb{R}_{>0},$$

generate a uniformity \mathcal{X}_d on X. (See Boul Top. Ch. IX §1 no. 2].)

- 5. (every uniformity comes from a family of pseudometrics) Let (X, \mathcal{X}) be a uniform space. Show that there exists a set \mathcal{D} of pseudometrics on X such that \mathcal{X} is the least upper bound of the set $\{\mathcal{X}_d \mid d \in \mathcal{D}\}$ of uniformities \mathcal{X}_d defined by the pseudometrics $d \in \mathcal{D}$. (See Bou, Top. Ch. IX §1 no. 4 Theorem 1].)
- 6. (The neighborhood filter of a uniform space) Let (X, \mathcal{X}) be a uniform space. Let $x \in X$ and let $\mathcal{N}(x)$ be the neighborhood filter of x. Show that

$$\mathcal{N}(x) = \{ B_V(x) \mid V \in \mathcal{X} \}.$$

7. (The uniform space topology is a topology) Let (X, \mathcal{X}) be a uniform space. Let

$$B_V(x) = \{ y \in X \mid (x, y) \in V \} \text{ for } V \in \mathcal{X} \text{ and } x \in X, \text{ and let}$$
$$\mathcal{N}(x) = \{ B_V(x) \mid V \in \mathcal{X} \} \text{ for } x \in X.$$

- (a) Show that $\mathcal{T} = \{ U \subseteq X \mid \text{if } x \in U \text{ then } U \in \mathcal{N}(x) \}$ is a topology on X.
- (b) Show that if \mathcal{U} is a topology on X and $\mathcal{U} \supseteq \{B_V(x) \mid V \in \mathcal{X}\}$ then $\mathcal{U} \supseteq \mathcal{T}$.
- 8. (The metric space topology is a topology) Let (X, d) be a metric space. Let

$$B_{\epsilon}(x) = \{ y \in X \mid d(y, x) < \epsilon \} \text{ for } \epsilon \in \mathbb{R}_{>0} \text{ and } x \in X.$$

Let $\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X \}.$

- (a) Show that $\mathcal{T} = \{\text{unions of sets in } \mathcal{B}\}\$ is a topology on X.
- (b) Show that if \mathcal{U} is a topology on X and $\mathcal{U} \supseteq \mathcal{B}$ then $\mathcal{U} = \mathcal{T}$.
- 9. (warning on relating the metric space uniformity and the metric space topology) Let (X, d) be a metric space, \mathcal{X} the metric space uniformity on X and \mathcal{T} the metric space topology on X.
 - a) Show that if X is discrete then $\mathcal{T} = \{\text{unions of } B_v(x)\}$ and

$$\{B_V(x) \mid V \in \mathcal{X}, \ x \in X\} = \{B_\epsilon(x) \mid \epsilon \in \mathbb{R}_{>0}, \ x \in X\}.$$

(b) Show that if X is not discrete then

 $\{B_V(x) \mid V \in \mathcal{X}, x \in X\}$ is not equal to $\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X\}.$

(c) Give an example to show that if X is not discrete then

 \mathcal{T} is not equal to {unions of $B_V(x)$ }.

- 10. (Example of a topological space that is not a uniform space) Let $X = \{0, 1\}$ and let $\mathcal{T} = \{\emptyset, \{0\}, X\}$. Show that \mathcal{T} is a topology on X and that there does not exist a uniformity on X such that \mathcal{T} is the uniform space topology on X.
- 11. (Example of a topological space that is not a metric space) Let $X = \{0, 1\}$ and let $\mathcal{T} = \{\emptyset, \{0\}, X\}$. Show that \mathcal{T} is a topology on X and that there does not exist a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ such that \mathcal{T} is the metric space topology on X. (Show that \mathcal{T} is not Hausdorff.)
- 12. (Example of a uniform space that is not a metric space) Let $X = \{0, 1\}$ and let $\mathcal{X} = \{X \times X\}$. Show that \mathcal{X} is a uniformity on X and that there does not exist a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ such that \mathcal{X} is the metric space uniformity on X. (Show that the uniform space topology of X is not Hausdorff.)
- 13. (consistency of metric space topology, uniform space topology and metric space uniformity) Let (X, d) be a metric space and let \mathcal{X} be the metric space uniformity on X. Show that the uniform space topology of (X, \mathcal{X}) is the same as the metric space topology on (X, d).
- 14. (necessary and sufficient condition for a topology to be a uniform space topology) Let (X, \mathcal{T}) be a topological space. Show that there exists a uniformity \mathcal{X} on X such that \mathcal{T} is the uniform space topology on (X, \mathcal{X}) if and only if (X, \mathcal{T}) satisfies

if $x \in X$ and V is a neighborhood of x then there exists a continuous function $f: X \to [0, 1]$

with f(x) = 0 and $f(V^c) = \{1\}.$

(See Bou, Top. Ch. IX §1 no. 5 Theorem 2].)

- 15. (necessary conditions for a topology to be a metric space topology) Let (X, \mathcal{T}) be a topological space.
 - (X, \mathcal{T}) is Hausdorff if X satisfies: if $x, y \in X$ and $x \neq y$ then there exist open sets U and V in X such that

 $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

• (X, \mathcal{T}) is normal if X satisfies: if A and B are closed sets in X and $A \cap B = \emptyset$ then there exist open sets U and V in X such that

 $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

- (X, \mathcal{T}) is first countable if $\mathcal{N}(a)$ is countably generated for each $a \in X$,
- i.e. (X, \mathcal{T}) is first countable if X satisfies: if $a \in X$ then

there exist $N_1, N_2, \ldots \in \mathcal{N}(a)$ such that if $N \in \mathcal{N}(a)$ then there exists $r \in \mathbb{Z}_{>0}$ such that $N \supseteq N_r$.

Let (X, d) be a metric space and let \mathcal{T} be the metric space topology on X. Show that

- (a) (X, \mathcal{T}) is Hausdorff,
- (b) (X, \mathcal{T}) is normal,
- (c) (X, \mathcal{T}) is first countable.
- 16. (sufficient condition for a topology to be a metric space topology) A topological space (X, \mathcal{T}) is regular if (X, \mathcal{T}) is Hausdorff and

if $x \in X$ then $\begin{cases} C \subseteq X \mid C \text{ is closed and } x \in C \\ \text{ is a fundamental system of neighborhoods of } x. \end{cases}$

Let (X, \mathcal{T}) be a topological space. Show that

if (X, \mathcal{T}) is regular and \mathcal{T} has a countable base

then there exists a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ on X such that \mathcal{T} is the metric space topology of (X, d). (See Bou, Top. Ch. IX §4 Ex. 22].)

- 17. (necessary and sufficient condition for a topology to be a metric space topology) Let (X, \mathcal{T}) be a topological space. There exists a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ on X such that \mathcal{T} is the metric space topology of (X, d) if and only if
 - (a) (X, \mathcal{T}) is regular and
 - (b) there exists a sequence $(\mathcal{B}_1, \mathcal{B}_2, ...)$ of locally finite families of open subsets of X such that $\mathcal{B} = \bigcup_{n \in \mathbb{Z}_{>0}} \mathcal{B}_n$ is a base of the topology \mathcal{T} .

(See Bou, Top. Ch. IX §4 Ex. 22].)

18. (necessary and sufficient condition for a uniformity to be a metric space uniformity) Let (X, \mathcal{X}) be a uniform space and let \mathcal{T} be the uniform space topology of (X, \mathcal{X}) .

There exists a metric $d: X \times X \to \mathbb{R}_{\geq 0}$

on X such that \mathcal{X} is the metric space uniformity of (X, d) if and only if

(a) (X, \mathcal{T}) is Hausdorff and

(b) there exists a countable subset \mathcal{B} of \mathcal{X} such that

 $\mathcal{X} = \{ V \subseteq X \times X \mid V \text{ contains a set in } \mathcal{B} \}.$

(See Bou, Top. Ch. IX §5 no. 4 Theorem 1].)

21.3 The poset of topologies

1. (union generating set of a topology) Let (X, \mathcal{T}) be a topological space.

A union generating set, or base, of \mathcal{T} is a collection \mathcal{B} of subsets of X such that

 $\mathcal{T} = \{ \text{unions of sets in } \mathcal{B} \}.$

Show that \mathcal{B} is a base of the topology \mathcal{T} if and only if \mathcal{B} satisfies

(a) (intersection covering) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ then

there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq B_1 \cap B_2$.

- (b) (cover) $\bigcup_{B \in \mathcal{B}} B = X.$
- 2. (The metric space topology) Let (X, d) be a metric space. Show that

$$\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X \}$$

is a union generating set of the metric space topology on X.

3. (The discrete topology) Let X be a set. The power set of X, or the discrete topology on X, is

the set $\mathcal{P}(X) = \{A \subseteq X\}$ of all subsets of X.

Show that $\mathcal{P}(X)$ is a topology on X.

4. (The cofinite topology) A topological space (X, \mathcal{T}) is *Hausdorff* if it satisfies: if $x, y \in X$ and $x \neq y$ then there exist open sets U and V in X such that

$$x \in U$$
, $y \in V$ and $U \cap V = \emptyset$.

A topological space (X, \mathcal{T}) is *normal* if it satisfies: if A and B are closed sets in X and $A \cap B = \emptyset$ then there exist open sets U and V in X such that

 $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

A topological space (X, \mathcal{T}) is *first countable* if it satisfies

if $a \in X$ then there exists a countable collection of neighborhoods of awhich generates the neighborhood filter $\mathcal{N}(a)$ of a.

In other words, a topological space (X, \mathcal{T}) is first countable if it satisfies: if $a \in X$ then there exists $N_1, N_2, \ldots \in \mathcal{N}(a)$ such that if $N \in \mathcal{N}(a)$ then there exists $i \in \mathbb{Z}_{>0}$ such that $N \supseteq N_i$.

Let X be a set and let \mathcal{T} be the topology such that the closed sets are the finite subsets of X.

- (a) Show that if X is finite then \mathcal{T} is the discrete topology on X.
- (b) Show that if X is infinite then (X, \mathcal{T}) is not Hausdorff and not normal.
- (c) Show that if X is uncountable then (X, \mathcal{T}) is not first countable.

- 5. (The poset of topologies on X) Let X be a set and let $\mathcal{P}(X) = \{A \subseteq X\}$ be the power set of X. Show that \subseteq is a partial order on the set $\mathcal{P}(\mathcal{P}(X))$ of all subsets of $\mathcal{P}(X)$. Let $\mathcal{T}(\mathcal{P}(X))$ be the set of all topologies on X. Show that $\mathcal{T}(\mathcal{P}(X))$ is a subposet of $\mathcal{P}(\mathcal{P}(X))$).
- 6. (topologies and uniformities on a 2 element set) Let X be a set with 2 elements. Show that there are four possible topologies on X and two possible uniformities on X. Determine the uniform space topology of each uniformity on X.
- 7. (topologies on a 3 element set) Let X be a set with 3 elements. Determine all possible topologies on X.
- 8. (the order topology) Give an example of a poset X such that the collection $\mathcal{T} = \{\text{unions of open intervals}\}$ is not a topology. (Instead one should take the topology generated by the set of open intervals in X.) See Bou Top. Ch. I §1 Ex. 2 and §2 Ex. 5].

21.4 Topologically equivalent metric spaces

1. (Lipschitz equivalence implies topological equivalence) Let X be a set and let

 $d_1 \colon X \times X \to \mathbb{R}_{\geq 0}$ and $d_2 \colon X \times X \to \mathbb{R}_{\geq 0}$ be metrics on X.

The metrics d_1 and d_2 are topologically equivalent if

the metric space topology on (X, d_1) and on (X, d_2) are the same.

The metrics d_1 and d_2 are Lipschitz equivalent if there exist $c_1, c_2 \in \mathbb{R}_{>0}$ such that

if $x, y \in X$ then $c_1 d_2(x, y) \le d_1(x, y) \le c_2 d_1(x, y)$.

Show that if d_1 and d_2 are Lipschitz equivalent then d_1 and d_2 are topologically equivalent.

2. (every metric space is topologically equivalent to a bounded metric space) A metric space (X, d) is bounded if it satisfies

there exists $M \in \mathbb{R}_{>0}$ such that if $x_1, x_2 \in X$ then $d(x_1, x_2) < M$.

Let (X, d) be a metric space and define $b: X \times X \to \mathbb{R}_{\geq 0}$ by

$$b(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

- (a) Show that $b: X \times X \to \mathbb{R}_{\geq 0}$ is a metric on X.
- (b) Show that the metric space topology of (X, b) and the metric space topology on (X, d) are the same.
- (c) Show that (X, b) is a bounded metric space.

3. (boundedness is not a topological property) A metric space (X, d) is bounded if it satisfies

there exists $M \in \mathbb{R}_{>0}$ such that if $x_1, x_2 \in X$ then $d(x_1, x_2) < M$.

(a) Let $X = \mathbb{R}$ and let $d: X \times X \to \mathbb{R}_{\geq 0}$ and $b: X \times X \to \mathbb{R}_{\geq 0}$ be the metrics on \mathbb{R} given by

$$d(x,y) = |x-y|$$
 and $b(x,y) = \frac{|x-y|}{1+|x-y|}$.

Show that (X, d) and (X, b) have the same topology, that (X, d) is unbounded, and (X, b) is bounded.

(b) Let $X = \mathbb{R}^2$ and let $d: X \times X \to \mathbb{R}_{\geq 0}$ and $b: X \times X \to \mathbb{R}_{\geq 0}$ be the metrics on \mathbb{R} given by

$$d(x,y) = |x-y|$$
 and $b(x,y) = \frac{|x-y|}{1+|x-y|}$.

Draw pictures of the open balls $B_{\frac{1}{2}}(0)$, $B_{\frac{3}{4}}(0)$, $B_{\frac{9}{10}}(0)$ and $B_{\frac{99}{100}}(0)$ for the metric $b \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$.

4. Let (X, d) be a metric space. Show that the metric $d' \colon X \times X \to \mathbb{R}$ given by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is topologically equivalent to d.

5. Let (X, d) be a metric space. Show that (X, d') is a bounded metric space, where

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

- 6. Give an example of X and two metrics d and d' on X such that d is topologically equivalent to d' and (X, d) is not bounded and (X, d') is bounded.
- 7. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let $(X_1 \times \cdots \times X_\ell, d)$ be the product metric space. Let $\sigma: (X_1 \times \cdots \times X_\ell) \times (X_1 \times \cdots \times X_\ell) \to \mathbb{R}$ be given by

$$\sigma(x, y) = \max\{d_i(x_i, y_i) \mid 1 \le i \le \ell\}$$

Show that σ is a metric on $X_1 \times \cdots \times X_\ell$ and d is topologically equivalent to σ .

8. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let $(X_1 \times \cdots \times X_\ell, d)$ be the product metric space. Let $\rho: (X_1 \times \cdots \times X_\ell) \times (X_1 \times \cdots \times X_\ell) \to \mathbb{R}$ be given by

$$\rho(x,y) = \left(\sum_{i=1}^{\ell} d_i(x_i,y_i)^2\right)^{\frac{1}{2}}$$

Show that ρ is a metric on $X_1 \times \cdots \times X_\ell$ and d is topologically equivalent to ρ .

9. Let X be a set and let d and d' be metrics on X. Show that d and d' are topolgically equivalent if d and d' satisfy the condition

if $x, y \in X$ then there exist $k, k' \in \mathbb{R}$ such that $d(x, y) \leq kd'(x, y) \leq k'd(x, y)$.

10. Let X be a set. Metrics d and \overline{d} defined on X are Lipschitz equivalent if there exist $m, M \in \mathbb{R}_{>0}$ such that

if $x, y \in X$ then $md(x, y) \le \overline{d}(x, y) \le Md(x, y)$

- (a) Show that if d and \overline{d} are Lipschitz equivalent, then they are topologically equivalent.
- (b) Give an example of X and two topologically equivalent metrics on X which are not Lipschitz equivalent.
- (c) For $p \ge 1$ and $x, y \in \mathbb{R}^n$, the l^p metric is defined by

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p} = ||x - y||_p$$

Show that if $p, q \ge 1$, then d_p and d_q are Lipschitz equivalent. (Hint: compare these with $d_{\infty}(x, y) = \max(|x_1 - y_1|, \dots, |x_n - y_n|).$)

11. (limit definition of topological equivalence) PUT THIS IN

21.5 Favourite examples of metric and normed spaces

1. (example of a nonHausdorff space) Let $X = \{(x, 1) \mid x \in \mathbb{R}\} \cup \{(0, 2)\}$ with

$$d((x_1, y_1), (x_2, y_2))| = |x_1 - x_2| \quad \text{and topology} \quad \mathcal{T} = \{\text{unions of sets in } \mathcal{B}\},\$$

where $\mathcal{B} = \{B_{\epsilon}(x, y) \mid \epsilon \in \mathbb{R}_{>0}, (x, y) \in X\}$ and

$$B_{\epsilon}(x,y) = \{(a,b) \in X \mid d((a,b),(x,y)) < \epsilon$$

Show that X is a non Hausdorff topological space.

- 2. (the two point space) Let X be a set.
 - (a) Carefully define a "topology on X" and a "uniformity on X".
 - (b) Let (X, d) be a metric space. Carefully define the "metric space topology on X" and the "metric space uniformity on X".
 - (c) Determine all the topologies on the set $X = \{0, 1\}$.
 - (d) Determine all the uniformities on $X = \{0, 1\}$.
 - (e) For each of the uniformities you gave in part (d), compute the uniform space topology.
- 3. Define the standard metric on \mathbb{C} and show that \mathbb{C} , with this metric, is a metric space.

- 4. Let d be the standard metric on \mathbb{C} . Show that \mathbb{R} is a metric subspace of (\mathbb{C}, d) .
- 5. Let X be a set. Define the standard metric on X and show that X, with this metric, is a metric space.
- 6. Let $(X_1, d_1), \ldots, (X_n, d_n)$ be metric spaces. Define the product metric d on $X_1 \times X_2 \times \cdots \times X_n$ and show that $(X_1 \times \cdots \times X_n, d)$ is a metric space.
- 7. Let (X, || ||) be a normed vector space. Define the standard metric on X and show that X, with this metric, is a metric space.
- 8. Define the standard metric on \mathbb{R}^n and show that \mathbb{R}^n , with this metric, is a metric space.
- 9. Define the standard norm on \mathbb{R}^n and show that \mathbb{R}^n , with this norm, is a normed vector space.
- 10. Define the norm $\| \|_p$ on \mathbb{R}^n and show that $(\mathbb{R}^n, \| \|_p)$ is a normed vector space.
- 11. Let X be a nonempty set. Define the set of bounded functions $B(X, \mathbb{R})$ and the sup norm on $B(X, \mathbb{R})$. Show that $B(X, \mathbb{R})$, with this norm, is a normed vector space.
- 12. Let $a, b \in \mathbb{R}$ with a < b. Define the set of continuous functions $C([a, b], \mathbb{R})$ and the L^1 -norm on $C([a, b], \mathbb{R})$. Show that $C([a, b], \mathbb{R})$, with this norm, is a normed vector space.
- 13. Let $a, b \in \mathbb{R}$ with a < b. Show that the set $C_{bd}([a, b]), \mathbb{R})$ of bounded continuous functions is a metric subspace of $C([a, b], \mathbb{R})$ with the L^1 -norm.
- 14. Let (X, d) be a metric space. Define the metric space topology on X and show that it is a topology on X.
- 15. Let X be a set and let d be the discrete metric on X. Determine which subsets of X are in the metric space topology on X.
- 16. Give two metrics d and d' on \mathbb{R} such that \mathbb{Q} is open in the metric space topology on (\mathbb{R}, d) and \mathbb{Q} is not open in the metric space topology on (\mathbb{R}, d') .
- 17. Let $X = \{0, 1\}$ and let $\mathcal{T} = \{\emptyset, X, \{0\}\}.$
 - (a) Show that \mathcal{T} is a topology on X.
 - (b) Show that there does not exist a metric $d: X \times X \to \mathbb{R}_{\geq 0}$ such that \mathcal{T} is the metric space topology of (X, d).

- 18. Check if the following functions are metrics on X.

 - (a) $X = \mathbb{R}$ and $d(x, y) = |x^2 y^2|$. (b) $X = (-\infty, 0]$ and $d(x, y) = |x^2 y^2|$.
 - (c) $X = \mathbb{R}$ and $d(x, y) = |\arctan x \arctan y|$.
- 19. (The French railroad metric) Let $X = \mathbb{R}^2$ and let d be the usual metric. Let $\mathbf{0} = (0,0)$ and define

$$d_{\mathbf{0}}(x,y) = \begin{cases} 0, & \text{if } x = y; \\ d(x,\mathbf{0}) + d(\mathbf{0},y), & \text{if } x \neq y. \end{cases}$$

Verify that d_0 is a metric on X. (Paris is at the origin **0**.)

20. Let $X = \mathbb{R}^2$. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ define

$$d(x,y) = \begin{cases} 1/2, & \text{if } x_1 = y_1 \text{ and } x_2 \neq y_2 \text{ or if } x_1 \neq y_1 \text{ and } x_2 = y_2; \\ 1, & \text{if } x_1 \neq y_1 \text{ and } x_2 \neq y_2; \\ 0, & \text{otherwise.} \end{cases}$$

Verify that d is a metric and that two congruent rectangles, one with base parallel to the x-axis and the other at 45° to the x-axis, have different "area" if d is used to measure the length of sides.

- 21. Let (X, d) be a metric space. Let $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be a function such that
 - (a) If $0 \le a < b$ then $f(a) \le f(b)$,
 - (b) f(x) = 0 if and only if x = 0, and
 - (c) $f(a+b) \le f(a) + f(b)$.

Define $d_f \colon X \times X \to \mathbb{R}_{\geq 0}$ by

$$d_f(x,y) = f(d(x,y)).$$

Show that d_f is a metric. Let $k \in \mathbb{R}_{>0}$ and $\alpha \in \mathbb{R}_{(0,1]}$. Show that the functions

$$f(t) = kt$$
, $f(t) = t^{\alpha}$ and $f(t) = \frac{t}{1+t}$,

have properties (a), (b) and (c).

22. (the *p*-adic metric) Let X be a set. An *ultrametric on* X is a function $d: X \times X \to \mathbb{R}_{\geq 0}$ such that

$$d(x, z) \le \max\{d(x, y), d(y, z)\}$$

Let p be a prime number. Define the p-adic absolute value function $||_p : \mathbb{Q} \to \mathbb{Q}_{\geq 0}$ by

$$|x|_p = \begin{cases} 0, & \text{if } x = 0, \\ p^{-k}, & \text{if } x = p^k \cdot \frac{m}{n}, \text{ with } m, n \in \mathbb{Z}_{\neq 0} \text{ not divisible by } p. \end{cases}$$

(a) Show that if X is a set and d is an ultrametric on X then d is a metric on X.

(b) Show that if $x, y \in \mathbb{Q}$ then

$$|x+y|_p \le \max\{|x|_p, |y|_p\}$$

(c) Show that $d_p \colon \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}_{\geq 0}$ given by

 $d_p(x,y) = |x-y|_p$ is an ultrametric on \mathbb{Q} .

23. (product metrics) Let $(X_1, d_1), \ldots, (X_n, d_n)$ be metric spaces and let $X = X_1 \times \cdots \times X_n$. Define

$$d(x,y) = (d_1(x_1,y_1) + \dots + d_n(x_n,y_n))^{\frac{1}{2}},$$

$$\overline{d}(x,y) = \max\{d_1(x_1,y_1), \dots, d_n(x_n,y_n)\},$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n) \in X$. Verify that d and \overline{d} are metrics on X.

24. (Polynomials of degree $\leq n$ as a normed vector space) Fix a positive integer n. Denote by

$$\mathcal{P}_n = \{ p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_1, \dots, a_n \in \mathbb{R} \}.$$

For $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathcal{P}_n$ set

$$||p|| = \max\{|a_0|, |a_1|, \dots, |a_n|\}.$$

Verify that $\| \|$ is a norm on \mathcal{P}_n .

25. (An infinite product space) Let $(X_1, d_2), (X_2 d_2), \ldots$, be a sequence of metric spaces. Let

$$X = \left(\prod_{n \in \mathbb{Z}_{>0}} X_n\right) = \{ x = (x_1, x_2, \ldots) \mid x_n \in X_n \}.$$

For $x, y \in X$ let

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} \right)$$

Show that (X, d) is a metric space.

26. (the shape of product metrics) Sketch the open ball $B_1(0)$ in each of the metric spaces (\mathbb{R}^3, d_1) , (\mathbb{R}^3, d_2) , and (\mathbb{R}^3, d_∞) , where

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|$$

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|\}.$$

for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3) \in \mathbb{R}^3$.

27. (a metric on the positive integers) Define $d: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \to \mathbb{R}_{\geq 0}$ by

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right|.$$

- (a) Show that d is a metric.
- (b) Let $P \subseteq \mathbb{Z}_{>0}$ be the set of positive even numbers. Find diam(P) and diam $(\mathbb{Z}_{>0} \setminus P)$ in $(\mathbb{Z}_{>0}, d)$.
- (c) Let $n \in \mathbb{Z}_{>0}$. Find all elements of $B_{\frac{1}{2n}}(2n)$ and $B_{\frac{1}{2n}}(n)$.

21.6 Distances and diameters

- 1. Let X be a non-empty set and let $d: X \times X \to \mathbb{R}$ be a function such that
 - (i) d(x, y) = 0 if and only if x = y,
 - (ii) if $x, y, z \in X$ then $d(x, y) \le d(x, z) + d(y, z)$.

Prove that d is a metric on X and show that $d(y, z) \ge |d(x, y) - d(x, z)|$.

2. Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that

 $\operatorname{diam}(A \cup B) \le \operatorname{diam}(A) + \operatorname{diam}(B).$

What can you say if A and B are disjoint?

- 3. (diameter of an open ball) Let (X, d) be a metric space. Let $x_0 \in X$ and let $r \in \mathbb{R}_{>0}$.
 - (a) Show that $\operatorname{diam}(B_r(x_0)) \leq 2r$.
 - (b) Give an example showing that the strict inequality is possible.
- 4. Let (X, d) be a metric space.
 - (a) Prove that if $x, x', y, y' \in X$ then

$$|d(x,y) - d(x',y')| \le d(x,x') + d(y,y').$$

(b) Let A be a non-empty compact subset of X. Prove that there exist $a, b \in A$ such that

$$d(a,b) = \sup\{d(x,y) \mid x, y \in A\}$$