21 Problem List: Spaces

21.1 The Cauchy-Schwarz and triangle inequalities

1. (Cauchy-Schwarz and the triangle inequality) Let $(V,\langle\rangle$,$) be a positive definite inner product$ space. The length norm on V is the function

$$
\begin{array}{rll}
V & \rightarrow & \mathbb{R}_{\geq 0} \\
v & \mapsto & \|v\|
\end{array} \quad \text { given by } \quad\|v\|^{2}=\langle v, v\rangle
$$

Show that
(a) If $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(b) If $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.
2. (Pythagorean theorem) Let $(V,\langle\rangle$,$) be a positive definite inner product space. The length norm$ on V is the function

$$
\begin{array}{rll}
V & \rightarrow & \mathbb{R}_{\geq 0} \\
v & \mapsto & \|v\|
\end{array} \quad \text { given by } \quad\|v\|^{2}=\langle v, v\rangle
$$

Show that

$$
\text { if } x, y \in V \text { and }\langle x, y\rangle=0 \quad \text { then } \quad\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2}
$$

3. (angles and projections) Let $(V,\langle\rangle$,$) be a inner product space and let u, v \in V$.

The angle between v and u is $\theta \in[0,2 \pi)$ defined by

$$
\cos (\theta)=\frac{\langle v, u\rangle}{\|v\|\|u\|} \quad \text { and } \quad \operatorname{proj}_{u}(v)=\left\langle v, \frac{u}{\|u\|}\right\rangle \frac{u}{\|u\|}
$$

is the orthogonal projection of v onto u.

(a) Use the Cauchy-Schwarz inequality to show that $0 \leq \cos (\theta)<1$ and show that $\left\|\operatorname{proj}_{u}(v)\right\|=$ $\cos (\theta) \cdot\|v\|$.
(b) Let W be a finite dimensional subspace of V and let $\left\{u_{1}, \ldots, u_{k}\right\}$ be an orthonormal basis of W. The orthogonal projection of v onto the subspace W is

$$
\operatorname{proj}_{W}(v)=\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{k}\right\rangle u_{k} .
$$

Show that $\operatorname{proj}_{W}(v)$ is independent of the choice of orthonormal basis.
4. Let $(V,\langle\rangle$,$) be a positive definite inner product space. The length norm on V$ is the function

$$
\begin{array}{rll}
V & \rightarrow & \mathbb{R}_{\geq 0} \\
v & \mapsto & \|v\|
\end{array} \text { given by } \quad\|v\|^{2}=\langle v, v\rangle .
$$

(a) (The Cauchy-Schwarz inequality) Show that if $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(b) (The triangle inequality) Show that if $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.
(c) (The Pythagorean theorem) Show that

$$
\text { if } x, y \in V \text { and }\langle x, y\rangle=0 \quad \text { then } \quad\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2} .
$$

(d) (The parallelogram law) Show that

$$
\text { if } x, y \in V \text { then }\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(e) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{R} such that $\|\|: V \rightarrow \mathbb{R} \geq 0$ satisfies

$$
\text { if } x, y \in V \text { then } \quad\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2},
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{R}$ given by

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

is a positive definite symmetric inner product space such that $\|v\|^{2}=\langle v, v\rangle$. To prove that $\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$, first establish the identity

$$
\left\|x_{1}+x_{2}+y\right\|=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{1}+y\right\|^{2}+\left\|x_{2}+y\right\|^{2}-\frac{1}{2}\left\|x_{1}+y-x_{2}\right\|^{2}-\frac{1}{2}\left\|x_{2}+y-x_{1}\right\|^{2} .
$$

To prove that $\langle c x, y\rangle=\lambda c x, y\rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$.
(f) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{C} and $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ satisfies

$$
\text { if } x, y \in V \text { then }\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \text {, }
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{C}$ given by

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)
$$

is a positive definite Hermitian inner product space such that $\|v\|^{2}=\langle v, v\rangle$.

21.2 Relating types of spaces

1. (positive definite inner product spaces are normed vector spaces) Let $(V,\langle\rangle$,$) be a positive definite$ inner product space. The length norm on V is the function

$$
\begin{array}{rlll}
V & \rightarrow & \mathbb{R}_{\geq 0} \\
v & \mapsto & \|v\|
\end{array} \text { given by } \quad\|v\|^{2}=\langle v, v\rangle .
$$

Show that $(V,\| \|)$ is a normed vector space.
2. (inner product spaces from normed vector spaces: the parallelogram law)
(a) Let $(V,\langle\rangle$,$) be a inner product space and let \left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ be given by $\| v \|^{2}=\langle v, v\rangle$. Show that

$$
\text { if } x, y \in V \text { then } \quad\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

(the sum of the squared lengths of the edges is the sum of the squared lengths of the daigonals).

(b) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{R} such that $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ satisfies

$$
\text { if } x, y \in V \text { then } \quad\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{K}$ given by

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

is a positive definite symmetric inner product space such that $\|v\|^{2}=\langle v, v\rangle$. To prove that $\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$, first establish the identity

$$
\begin{aligned}
\left\|x_{1}+x_{2}+y\right\|= & \left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{1}+y\right\|^{2}+\left\|x_{2}+y\right\|^{2} \\
& -\frac{1}{2}\left\|x_{1}+y-x_{2}\right\|^{2}-\frac{1}{2}\left\|x_{2}+y-x_{1}\right\|^{2} .
\end{aligned}
$$

To prove that $\langle c x, y\rangle=c\langle x, y\rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$. (See [Bre, Ch. 5 Ex. 3].)
(c) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{C} such that $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ satisfies

$$
\text { if } x, y \in V \text { then } \quad\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2},
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{C}$ given by

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)
$$

is a positive definite Hermitian inner product space such that $\|v\|^{2}=\langle v, v\rangle$. (See $\underline{\mathbf{R u}}, \mathrm{Ch}$. 4 Ex. 11].)
3. (normed vector spaces are metric spaces) Let $(V,\| \|)$ be a normed vector space. The norm metric on V is the function

$$
d: V \times V \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=\|x-y\| .
$$

Show that (V, d) is a metric space.
4. (uniformity of a pseudometric) Let X be a set. A pseudometric on X is a function $f: X \times X \rightarrow$ $\mathbb{R}_{\geq 0} \cup\{\infty\}$ such that
(a) If $x \in X$ then $d(x, x)=0$,
(b) If $x, y \in X$ then $d(x, y)=d(y, x)$,
(c) If $x, y, z \in X$ then $d(x, y) \leq d(x, z)+d(z, y)$.

Show that the sets

$$
B_{\epsilon}=\{(x, y) \in X \times X \mid d(x, y)<\epsilon\}, \quad \text { for } \epsilon \in \mathbb{R}_{>0},
$$

generate a uniformity \mathcal{X}_{d} on X. (See [Bou, Top. Ch. IX $\S 1$ no. 2].)
5. (every uniformity comes from a family of pseudometrics) Let (X, \mathcal{X}) be a uniform space. Show that there exists a set \mathcal{D} of pseudometrics on X such that \mathcal{X} is the least upper bound of the set $\left\{\mathcal{X}_{d} \mid d \in \mathcal{D}\right\}$ of uniformities \mathcal{X}_{d} defined by the pseudometrics $d \in \mathcal{D}$. (See Bou, Top. Ch. IX $\S 1$ no. 4 Theorem 1].)
6. (The neighborhood filter of a uniform space) Let (X, \mathcal{X}) be a uniform space. Let $x \in X$ and let $\mathcal{N}(x)$ be the neighborhood filter of x. Show that

$$
\mathcal{N}(x)=\left\{B_{V}(x) \mid V \in \mathcal{X}\right\} .
$$

7. (The uniform space topology is a topology) Let (X, \mathcal{X}) be a uniform space. Let

$$
\begin{aligned}
B_{V}(x) & =\{y \in X \mid(x, y) \in V\} \quad \text { for } V \in \mathcal{X} \text { and } x \in X, \quad \text { and let } \\
\mathcal{N}(x) & =\left\{B_{V}(x) \mid V \in \mathcal{X}\right\} \quad \text { for } x \in X .
\end{aligned}
$$

(a) Show that $\mathcal{T}=\{U \subseteq X \mid$ if $x \in U$ then $U \in \mathcal{N}(x)\}$ is a topology on X.
(b) Show that if \mathcal{U} is a topology on X and $\mathcal{U} \supseteq\left\{B_{V}(x) \mid V \in \mathcal{X}\right\}$ then $\mathcal{U} \supseteq \mathcal{T}$.
8. (The metric space topology is a topology) Let (X, d) be a metric space. Let

$$
B_{\epsilon}(x)=\{y \in X \mid d(y, x)<\epsilon\} \quad \text { for } \epsilon \in \mathbb{R}_{>0} \text { and } x \in X \text {. }
$$

Let $\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X\right\}$.
(a) Show that $\mathcal{T}=\{$ unions of sets in $\mathcal{B}\}$ is a topology on X.
(b) Show that if \mathcal{U} is a topology on X and $\mathcal{U} \supseteq \mathcal{B}$ then $\mathcal{U}=\mathcal{T}$.
9. (warning on relating the metric space uniformity and the metric space topology) Let (X, d) be a metric space, \mathcal{X} the metric space uniformity on X and \mathcal{T} the metric space topology on X.
a) Show that if X is discrete then $\mathcal{T}=\left\{\right.$ unions of $\left.B_{v}(x)\right\}$ and

$$
\left\{B_{V}(x) \mid V \in \mathcal{X}, x \in X\right\}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X\right\}
$$

(b) Show that if X is not discrete then

$$
\left\{B_{V}(x) \mid V \in \mathcal{X}, x \in X\right\} \quad \text { is not equal to } \quad\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X\right\} .
$$

(c) Give an example to show that if X is not discrete then

$$
\mathcal{T} \text { is not equal to }\left\{\text { unions of } B_{V}(x)\right\} .
$$

10. (Example of a topological space that is not a uniform space) Let $X=\{0,1\}$ and let $\mathcal{T}=$ $\{\emptyset,\{0\}, X\}$. Show that \mathcal{T} is a topology on X and that there does not exist a uniformity on X such that \mathcal{T} is the uniform space topology on X.
11. (Example of a topological space that is not a metric space) Let $X=\{0,1\}$ and let $\mathcal{T}=$ $\{\emptyset,\{0\}, X\}$. Show that \mathcal{T} is a topology on X and that there does not exist a metric $d: X \times X \rightarrow$ $\mathbb{R}_{\geq 0}$ such that \mathcal{T} is the metric space topology on X. (Show that \mathcal{T} is not Hausdorff.)
12. (Example of a uniform space that is not a metric space) Let $X=\{0,1\}$ and let $\mathcal{X}=\{X \times X\}$. Show that \mathcal{X} is a uniformity on X and that there does not exist a metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ such that \mathcal{X} is the metric space uniformity on X. (Show that the uniform space topology of X is not Hausdorff.)
13. (consistency of metric space topology, uniform space topology and metric space uniformity) Let (X, d) be a metric space and let \mathcal{X} be the metric space uniformity on X. Show that the uniform space topology of (X, \mathcal{X}) is the same as the metric space topology on (X, d).
14. (necessary and sufficient condition for a topology to be a uniform space topology) Let (X, \mathcal{T}) be a topological space. Show that there exists a uniformity \mathcal{X} on X such that \mathcal{T} is the uniform space topology on (X, \mathcal{X}) if and only if (X, \mathcal{T}) satisfies
if $x \in X$ and V is a neighborhood of x then there exists a continuous function $f: X \rightarrow[0,1]$

$$
\text { with } \quad f(x)=0 \quad \text { and } \quad f\left(V^{c}\right)=\{1\} .
$$

(See [Bou, Top. Ch. IX §1 no. 5 Theorem 2].)
15. (necessary conditions for a topology to be a metric space topology) Let (X, \mathcal{T}) be a topological space.

- (X, \mathcal{T}) is Hausdorff if X satisfies: if $x, y \in X$ and $x \neq y$ then there exist open sets U and V in X such that

$$
x \in U, \quad y \in V \quad \text { and } \quad U \cap V=\emptyset .
$$

- (X, \mathcal{T}) is normal if X satisfies: if A and B are closed sets in X and $A \cap B=\emptyset$ then there exist open sets U and V in X such that

$$
A \subseteq U, \quad B \subseteq V \quad \text { and } \quad U \cap V=\emptyset
$$

- (X, \mathcal{T}) is first countable if $\mathcal{N}(a)$ is countably generated for each $a \in X$, i.e. (X, \mathcal{T}) is first countable if X satisfies: if $a \in X$ then there exist $N_{1}, N_{2}, \ldots \in \mathcal{N}(a)$ such that if $N \in \mathcal{N}(a)$ then there exists $r \in \mathbb{Z}_{>0}$ such that $N \supseteq N_{r}$.

Let (X, d) be a metric space and let \mathcal{T} be the metric space topology on X. Show that
(a) (X, \mathcal{T}) is Hausdorff,
(b) (X, \mathcal{T}) is normal,
(c) (X, \mathcal{T}) is first countable.
16. (sufficient condition for a topology to be a metric space topology) A topological space (X, \mathcal{T}) is regular if (X, \mathcal{T}) is Hausdorff and

$$
\begin{array}{lll}
\text { if } x \in X \quad \text { then } & \{C \subseteq X \mid C \text { is closed and } x \in C\} \\
& \text { is a fundamental system of neighborhoods of } x .
\end{array}
$$

Let (X, \mathcal{T}) be a topological space. Show that

$$
\text { if }(X, \mathcal{T}) \text { is regular and } \mathcal{T} \text { has a countable base }
$$

then there exists a metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ on X such that \mathcal{T} is the metric space topology of (X, d). (See [Bou, Top. Ch. IX §4 Ex. 22].)
17. (necessary and sufficient condition for a topology to be a metric space topology) Let (X, \mathcal{T}) be a topological space. There exists a metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ on X such that \mathcal{T} is the metric space topology of (X, d) if and only if
(a) (X, \mathcal{T}) is regular and
(b) there exists a sequence $\left(\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right)$ of locally finite families of open subsets of X such that $\mathcal{B}=\bigcup_{n \in \mathbb{Z}_{>0}} \mathcal{B}_{n}$ is a base of the topology \mathcal{T}.
(See [Bou, Top. Ch. IX §4 Ex. 22].)
18. (necessary and sufficient condition for a uniformity to be a metric space uniformity) Let (X, \mathcal{X}) be a uniform space and let \mathcal{T} be the uniform space topology of (X, \mathcal{X}).

$$
\text { There exists a metric } d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

on X such that \mathcal{X} is the metric space uniformity of (X, d) if and only if
(a) (X, \mathcal{T}) is Hausdorff and
(b) there exists a countable subset \mathcal{B} of \mathcal{X} such that

$$
\mathcal{X}=\{V \subseteq X \times X \mid V \text { contains a set in } \mathcal{B}\} .
$$

(See Bou, Top. Ch. IX $\S 5$ no. 4 Theorem 1].)

21.3 The poset of topologies

1. (union generating set of a topology) Let (X, \mathcal{T}) be a topological space.

A union generating set, or base, of \mathcal{T} is a collection \mathcal{B} of subsets of X such that

$$
\mathcal{T}=\{\text { unions of sets in } \mathcal{B}\} .
$$

Show that \mathcal{B} is a base of the topology \mathcal{T} if and only if \mathcal{B} satisfies
(a) (intersection covering) If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \cap B_{2}$ then
there exists $B \in \mathcal{B}$ such that $\quad x \in B$ and $B \subseteq B_{1} \cap B_{2}$.
(b) (cover) $\bigcup_{B \in \mathcal{B}} B=X$.
2. (The metric space topology) Let (X, d) be a metric space. Show that

$$
\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in X\right\}
$$

is a union generating set of the metric space topology on X.
3. (The discrete topology) Let X be a set. The power set of X, or the discrete topology on X, is

$$
\text { the set } \mathcal{P}(X)=\{A \subseteq X\} \quad \text { of all subsets of } X \text {. }
$$

Show that $\mathcal{P}(X)$ is a topology on X.
4. (The cofinite topology) A topological space (X, \mathcal{T}) is Hausdorff if it satisfies: if $x, y \in X$ and $x \neq y$ then there exist open sets U and V in X such that

$$
x \in U, \quad y \in V \quad \text { and } \quad U \cap V=\emptyset .
$$

A topological space (X, \mathcal{T}) is normal if it satisfies: if A and B are closed sets in X and $A \cap B=\emptyset$ then there exist open sets U and V in X such that

$$
A \subseteq U, \quad B \subseteq V \quad \text { and } \quad U \cap V=\emptyset .
$$

A topological space (X, \mathcal{T}) is first countable if it satisfies

$$
\text { if } a \in X \quad \text { then there exists }
$$

a countable collection of neighborhoods of a which generates the neighborhood filter $\mathcal{N}(a)$ of a.

In other words, a topological space (X, \mathcal{T}) is first countable if it satisfies: if $a \in X$ then there exists $N_{1}, N_{2}, \ldots \in \mathcal{N}(a)$ such that if $N \in \mathcal{N}(a)$ then there exists $i \in \mathbb{Z}_{>0}$ such that $N \supseteq N_{i}$.
Let X be a set and let \mathcal{T} be the topology such that the closed sets are the finite subsets of X.
(a) Show that if X is finite then \mathcal{T} is the discrete topology on X.
(b) Show that if X is infinite then (X, \mathcal{T}) is not Hausdorff and not normal.
(c) Show that if X is uncountable then (X, \mathcal{T}) is not first countable.
5. (The poset of topologies on X) Let X be a set and let $\mathcal{P}(X)=\{A \subseteq X\}$ be the power set of X. Show that \subseteq is a partial order on the set $\mathcal{P}(\mathcal{P}(X))$ of all subsets of $\mathcal{P}(X)$. Let $\mathcal{T}(\mathcal{P}(X)$ be the set of all topologies on X. Show that $\mathcal{T}(\mathcal{P}(X))$ is a subposet of $\mathcal{P}(\mathcal{P}(X)))$.
6. (topologies and uniformities on a 2 element set) Let X be a set with 2 elements. Show that there are four possible topologies on X and two possible uniformities on X. Determine the uniform space topology of each uniformity on X.
7. (topologies on a 3 element set) Let X be a set with 3 elements. Determine all possible topologies on X.
8. (the order topology) Give an example of a poset X such that the collection $\mathcal{T}=$ \{unions of open intervals $\}$ is not a topology. (Instead one should take the topology generated by the set of open intervals in X.) See Bou, Top. Ch. I §1 Ex. 2 and $\S 2$ Ex. 5].

21.4 Topologically equivalent metric spaces

1. (Lipschitz equivalence implies topological equivalence) Let X be a set and let

$$
d_{1}: X \times X \rightarrow \mathbb{R}_{\geq 0} \quad \text { and } \quad d_{2}: X \times X \rightarrow \mathbb{R}_{\geq 0} \quad \text { be metrics on } X .
$$

The metrics d_{1} and d_{2} are topologically equivalent if
the metric space topology on $\left(X, d_{1}\right)$ and on $\left(X, d_{2}\right)$ are the same.
The metrics d_{1} and d_{2} are Lipschitz equivalent if there exist $c_{1}, c_{2} \in \mathbb{R}_{>0}$ such that

$$
\text { if } x, y \in X \quad \text { then } \quad c_{1} d_{2}(x, y) \leq d_{1}(x, y) \leq c_{2} d_{1}(x, y) \text {. }
$$

Show that if d_{1} and d_{2} are Lipschitz equivalent then d_{1} and d_{2} are topologically equivalent.
2. (every metric space is topologically equivalent to a bounded metric space) A metric space (X, d) is bounded if it satisfies

$$
\text { there exists } M \in \mathbb{R}_{\geq 0} \text { such that if } x_{1}, x_{2} \in X \text { then } d\left(x_{1}, x_{2}\right)<M \text {. }
$$

Let (X, d) be a metric space and define $b: X \times X \rightarrow \mathbb{R}_{\geq 0}$ by

$$
b(x, y)=\frac{d(x, y)}{1+d(x, y)} .
$$

(a) Show that $b: X \times X \rightarrow \mathbb{R}_{\geq 0}$ is a metric on X.
(b) Show that the metric space topology of (X, b) and the metric space topology on (X, d) are the same.
(c) Show that (X, b) is a bounded metric space.
3. (boundedness is not a topological property) A metric space (X, d) is bounded if it satisfies

$$
\text { there exists } M \in \mathbb{R}_{>0} \text { such that if } x_{1}, x_{2} \in X \text { then } d\left(x_{1}, x_{2}\right)<M \text {. }
$$

(a) Let $X=\mathbb{R}$ and let $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ and $b: X \times X \rightarrow \mathbb{R}_{\geq 0}$ be the metrics on \mathbb{R} given by

$$
d(x, y)=|x-y| \quad \text { and } \quad b(x, y)=\frac{|x-y|}{1+|x-y|} .
$$

Show that (X, d) and (X, b) have the same topology, that (X, d) is unbounded, and (X, b) is bounded.
(b) Let $X=\mathbb{R}^{2}$ and let $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ and $b: X \times X \rightarrow \mathbb{R}_{\geq 0}$ be the metrics on \mathbb{R} given by

$$
d(x, y)=|x-y| \quad \text { and } \quad b(x, y)=\frac{|x-y|}{1+|x-y|}
$$

Draw pictures of the open balls $B_{\frac{1}{2}}(0), B_{\frac{3}{4}}(0), B_{\frac{9}{10}}(0)$ and $B_{\frac{99}{100}}(0)$ for the metric $b: \mathbb{R}^{2} \times$ $\mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$.
4. Let (X, d) be a metric space. Show that the metric $d^{\prime}: X \times X \rightarrow \mathbb{R}$ given by

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

is topologically equivalent to d.
5. Let (X, d) be a metric space. Show that $\left(X, d^{\prime}\right)$ is a bounded metric space, where

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

6. Give an example of X and two metrics d and d^{\prime} on X such that d is topologically equivalent to d^{\prime} and (X, d) is not bounded and $\left(X, d^{\prime}\right)$ is bounded.
7. Let $\left(X_{1}, d_{1}\right), \ldots,\left(X_{\ell}, d_{\ell}\right)$ be metric spaces and let $\left(X_{1} \times \cdots \times X_{\ell}, d\right)$ be the product metric space. Let $\sigma:\left(X_{1} \times \cdots \times X_{\ell}\right) \times\left(X_{1} \times \cdots \times X_{\ell}\right) \rightarrow \mathbb{R}$ be given by

$$
\sigma(x, y)=\max \left\{d_{i}\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq \ell\right\} .
$$

Show that σ is a metric on $X_{1} \times \cdots \times X_{\ell}$ and d is topologically equivalent to σ.
8. Let $\left(X_{1}, d_{1}\right), \ldots,\left(X_{\ell}, d_{\ell}\right)$ be metric spaces and let $\left(X_{1} \times \cdots \times X_{\ell}, d\right)$ be the product metric space. Let $\rho:\left(X_{1} \times \cdots \times X_{\ell}\right) \times\left(X_{1} \times \cdots \times X_{\ell}\right) \rightarrow \mathbb{R}$ be given by

$$
\rho(x, y)=\left(\sum_{i=1}^{\ell} d_{i}\left(x_{i}, y_{i}\right)^{2}\right)^{\frac{1}{2}} .
$$

Show that ρ is a metric on $X_{1} \times \cdots \times X_{\ell}$ and d is topologically equivalent to ρ.
9. Let X be a set and let d and d^{\prime} be metrics on X. Show that d and d^{\prime} are topolgically equivalent if d and d^{\prime} satisfy the condition
if $x, y \in X \quad$ then \quad there exist $k, k^{\prime} \in \mathbb{R} \quad$ such that $\quad d(x, y) \leq k d^{\prime}(x, y) \leq k^{\prime} d(x, y)$.
10. Let X be a set. Metrics d and \bar{d} defined on X are Lipschitz equivalent if there exist $m, M \in \mathbb{R}_{>0}$ such that

$$
\text { if } x, y \in X \quad \text { then } \quad \operatorname{md}(x, y) \leq \bar{d}(x, y) \leq M d(x, y)
$$

(a) Show that if d and \bar{d} are Lipschitz equivalent, then they are toplogically equivalent.
(b) Give an example of X and two topologically equivalent metrics on X which are not Lipschitz equivalent.
(c) For $p \geq 1$ and $x, y \in \mathbb{R}^{n}$, the l^{p} metric is defined by

$$
d_{p}(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}=\|x-y\|_{p}
$$

Show that if $p, q \geq 1$, then d_{p} and d_{q} are Lipschitz equivalent. (Hint: compare these with $\left.d_{\infty}(x, y)=\max \left(\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right).\right)$
11. (limit definition of topological equivalence) PUT THIS IN

21.5 Favourite examples of metric and normed spaces

1. (example of a nonHausdorff space) Let $X=\{(x, 1) \mid x \in \mathbb{R}\} \cup\{(0,2)\}$ with

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\left|=\left|x_{1}-x_{2}\right| \quad \text { and topology } \quad \mathcal{T}=\{\text { unions of sets in } \mathcal{B}\}\right.
$$

where $\mathcal{B}=\left\{B_{\epsilon}(x, y) \mid \epsilon \in \mathbb{R}_{>0},(x, y) \in X\right\}$ and

$$
B_{\epsilon}(x, y)=\{(a, b) \in X \mid d((a, b),(x, y))<\epsilon
$$

Show that X is a non Hausdorff topological space.
2. (the two point space) Let X be a set.
(a) Carefully define a "topology on X " and a "uniformity on X ".
(b) Let (X, d) be a metric space. Carefully define the "metric space topology on X " and the "metric space uniformity on X ".
(c) Determine all the topologies on the set $X=\{0,1\}$.
(d) Determine all the uniformities on $X=\{0,1\}$.
(e) For each of the uniformities you gave in part (d), compute the uniform space topology.
3. Define the standard metric on \mathbb{C} and show that \mathbb{C}, with this metric, is a metric space.
4. Let d be the standard metric on \mathbb{C}. Show that \mathbb{R} is a metric subspace of (\mathbb{C}, d).
5. Let X be a set. Define the standard metric on X and show that X, with this metric, is a metric space.
6. Let $\left(X_{1}, d_{1}\right), \ldots,\left(X_{n}, d_{n}\right)$ be metric spaces. Define the product metric d on $X_{1} \times X_{2} \times \cdots \times X_{n}$ and show that $\left(X_{1} \times \cdots \times X_{n}, d\right)$ is a metric space.
7. Let $(X,\| \|)$ be a normed vector space. Define the standard metric on X and show that X, with this metric, is a metric space.
8. Define the standard metric on \mathbb{R}^{n} and show that \mathbb{R}^{n}, with this metric, is a metric space.
9. Define the standard norm on \mathbb{R}^{n} and show that \mathbb{R}^{n}, with this norm, is a normed vector space.
10. Define the norm $\left\|\|_{p}\right.$ on \mathbb{R}^{n} and show that $\left(\mathbb{R}^{n},\| \|_{p}\right)$ is a normed vector space.
11. Let X be a nonempty set. Define the set of bounded functions $B(X, \mathbb{R})$ and the sup norm on $B(X, \mathbb{R})$. Show that $B(X, \mathbb{R})$, with this norm, is a normed vector space.
12. Let $a, b \in \mathbb{R}$ with $a<b$. Define the set of continuous functions $C([a, b], \mathbb{R})$ and the L^{1}-norm on $C([a, b], \mathbb{R})$. Show that $C([a, b], \mathbb{R})$, with this norm, is a normed vector space.
13. Let $a, b \in \mathbb{R}$ with $a<b$. Show that the set $\left.C_{\mathrm{bd}}([a, b]), \mathbb{R}\right)$ of bounded continuous functions is a metric subspace of $C([a, b], \mathbb{R})$ with the L^{1}-norm.
14. Let (X, d) be a metric space. Define the metric space topology on X and show that it is a topology on X.
15. Let X be a set and let d be the discrete metric on X. Determine which subsets of X are in the metric space topology on X.
16. Give two metrics d and d^{\prime} on \mathbb{R} such that \mathbb{Q} is open in the metric space topology on (\mathbb{R}, d) and \mathbb{Q} is not open in the metric space topology on $\left(\mathbb{R}, d^{\prime}\right)$.
17. Let $X=\{0,1\}$ and let $\mathcal{T}=\{\emptyset, X,\{0\}\}$.
(a) Show that \mathcal{T} is a topology on X.
(b) Show that there does not exist a metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ such that \mathcal{T} is the metric space topology of (X, d).
18. Check if the following functions are metrics on X.
(a) $X=\mathbb{R}$ and $d(x, y)=\left|x^{2}-y^{2}\right|$.
(b) $X=(-\infty, 0]$ and $d(x, y)=\left|x^{2}-y^{2}\right|$.
(c) $X=\mathbb{R}$ and $d(x, y)=|\arctan x-\arctan y|$.
19. (The French railroad metric) Let $X=\mathbb{R}^{2}$ and let d be the usual metric. Let $\mathbf{0}=(0,0)$ and define

$$
d_{\mathbf{0}}(x, y)= \begin{cases}0, & \text { if } x=y \\ d(x, \mathbf{0})+d(\mathbf{0}, y), & \text { if } x \neq y\end{cases}
$$

Verify that d_{0} is a metric on X. (Paris is at the origin $\mathbf{0}$.)
20. Let $X=\mathbb{R}^{2}$. For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ define

$$
d(x, y)= \begin{cases}1 / 2, & \text { if } x_{1}=y_{1} \text { and } x_{2} \neq y_{2} \text { or if } x_{1} \neq y_{1} \text { and } x_{2}=y_{2} \\ 1, & \text { if } x_{1} \neq y_{1} \text { and } x_{2} \neq y_{2} ; \\ 0, & \text { otherwise. }\end{cases}
$$

Verify that d is a metric and that two congruent rectangles, one with base parallel to the x-axis and the other at 45° to the x-axis, have different "area" if d is used to measure the length of sides.
21. Let (X, d) be a metric space. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be a function such that
(a) If $0 \leq a<b$ then $f(a) \leq f(b)$,
(b) $f(x)=0$ if and only if $x=0$, and
(c) $f(a+b) \leq f(a)+f(b)$.

Define $d_{f}: X \times X \rightarrow \mathbb{R}_{\geq 0}$ by

$$
d_{f}(x, y)=f(d(x, y))
$$

Show that d_{f} is a metric. Let $k \in \mathbb{R}_{>0}$ and $\alpha \in \mathbb{R}_{(0,1]}$. Show that the functions

$$
f(t)=k t, \quad f(t)=t^{\alpha} \quad \text { and } \quad f(t)=\frac{t}{1+t}
$$

have properties (a), (b) and (c).
22. (the p-adic metric) Let X be a set. An ultrametric on X is a function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\} .
$$

Let p be a prime number. Define the p-adic absolute value function $\left|\left.\right|_{p}: \mathbb{Q} \rightarrow \mathbb{Q} \geq 0\right.$ by

$$
|x|_{p}= \begin{cases}0, & \text { if } x=0, \\ p^{-k}, & \text { if } x=p^{k} \cdot \frac{m}{n}, \text { with } m, n \in \mathbb{Z}_{\neq 0} \text { not divisible by } p .\end{cases}
$$

(a) Show that if X is a set and d is an ultrametric on X then d is a metric on X.
(b) Show that if $x, y \in \mathbb{Q}$ then

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}
$$

(c) Show that $d_{p}: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{p}(x, y)=|x-y|_{p} \quad \text { is an ultrametric on } \mathbb{Q} .
$$

23. (product metrics) Let $\left(X_{1}, d_{1}\right), \ldots,\left(X_{n}, d_{n}\right)$ be metric spaces and let $X=X_{1} \times \cdots \times X_{n}$. Define

$$
\begin{aligned}
& d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right)+\cdots+d_{n}\left(x_{n}, y_{n}\right)\right)^{\frac{1}{2}} \\
& \bar{d}(x, y)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{n}\left(x_{n}, y_{n}\right)\right\}
\end{aligned}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in X$. Verify that d and \bar{d} are metrics on X.
24. (Polynomials of degree $\leq n$ as a normed vector space) Fix a positive integer n. Denote by

$$
\mathcal{P}_{n}=\left\{p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{1}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

For $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathcal{P}_{n}$ set

$$
\|p\|=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
$$

Verify that $\left\|\|\right.$ is a norm on \mathcal{P}_{n}.
25. (An infinite product space) Let $\left(X_{1}, d_{2}\right),\left(X_{2} d_{2}\right), \ldots$, be a sequence of metric spaces. Let

$$
X=\left(\prod_{n \in \mathbb{Z}_{>0}} X_{n}\right)=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{n} \in X_{n}\right\}
$$

For $x, y \in X$ let

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(\frac{d_{n}\left(x_{n}, y_{n}\right)}{1+d_{n}\left(x_{n}, y_{n}\right)}\right)
$$

Show that (X, d) is a metric space.
26. (the shape of product metrics) Sketch the open ball $B_{1}(0)$ in each of the metric spaces $\left(\mathbb{R}^{3}, d_{1}\right)$, $\left(\mathbb{R}^{3}, d_{2}\right)$, and $\left(\mathbb{R}^{3}, d_{\infty}\right)$, where

$$
\begin{aligned}
d_{1}(x, y) & =\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\left|x_{3}-y_{3}\right| \\
d_{2}(x, y) & =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} \\
d_{\infty}(x, y) & =\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|,\left|x_{3}-y_{3}\right|\right\} .
\end{aligned}
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$.
27. (a metric on the positive integers) Define $d: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
d(n, m)=\left|\frac{1}{n}-\frac{1}{m}\right|
$$

(a) Show that d is a metric.
(b) Let $P \subseteq \mathbb{Z}_{>0}$ be the set of positive even numbers. Find $\operatorname{diam}(P)$ and $\operatorname{diam}\left(\mathbb{Z}_{>0} \backslash P\right)$ in $\left(\mathbb{Z}_{>0}, d\right)$.
(c) Let $n \in \mathbb{Z}_{>0}$. Find all elements of $B_{\frac{1}{2 n}}(2 n)$ and $B_{\frac{1}{2 n}}(n)$.

21.6 Distances and diameters

1. Let X be a non-empty set and let $d: X \times X \rightarrow \mathbb{R}$ be a function such that
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) if $x, y, z \in X$ then $d(x, y) \leq d(x, z)+d(y, z)$.

Prove that d is a metric on X and show that $d(y, z) \geq|d(x, y)-d(x, z)|$.
2. Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A)+\operatorname{diam}(B)$.

What can you say if A and B are disjoint?
3. (diameter of an open ball) Let (X, d) be a metric space. Let $x_{0} \in X$ and let $r \in \mathbb{R}_{>0}$.
(a) Show that $\operatorname{diam}\left(B_{r}\left(x_{0}\right)\right) \leq 2 r$.
(b) Give an example showing that the strict inequality is possible.
4. Let (X, d) be a metric space.
(a) Prove that if $x, x^{\prime}, y, y^{\prime} \in X$ then

$$
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

(b) Let A be a non-empty compact subset of X. Prove that there exist $a, b \in A$ such that

$$
d(a, b)=\sup \{d(x, y) \mid x, y \in A\} .
$$

