17 Number systems

17.1 The number systems $\mathbb{R}, \mathbb{Q}_{p}$ and $\mathbb{R}((t))$

17.1.1 The real numbers

The real numbers \mathbb{R} is the set of decimal expansions.
The real numbers \mathbb{R} contain the integers \mathbb{Z}.

$$
\begin{aligned}
& \mathbb{R}=\left\{\left. \pm\left(a_{-\ell}\left(\frac{1}{10}\right)^{-\ell}+a_{-\ell+1}\left(\frac{1}{10}\right)^{-\ell+1}+a_{-\ell+2}\left(\frac{1}{10}\right)^{-\ell+2}+\cdots\right) \right\rvert\, \ell \in \mathbb{Z}, a_{j} \in \frac{\mathbb{Z}}{10 \mathbb{Z}}\right\} \\
& \cup \mid \\
& \mathbb{Z}=\left\{\left. \pm\left(a_{-\ell}\left(\frac{1}{10}\right)^{-\ell}+a_{-\ell+1}\left(\frac{1}{10}\right)^{-\ell+1}+\cdots+a_{-1}\left(\frac{1}{10}\right)+a_{0}\right) \right\rvert\, \ell \in \mathbb{Z}_{\geq 0}, a_{j} \in \frac{\mathbb{Z}}{10 \mathbb{Z}}\right\}
\end{aligned}
$$

where $\frac{\mathbb{Z}}{10 \mathbb{Z}}=\{0,1,2,3,4,5,6,7,8,9\}$ and the addition and multiplication in \mathbb{R} are compatible with the addition and multiplication in \mathbb{Z}.

17.1.2 The p-adic numbers

Let $p \in \mathbb{Z}_{>0}$. The p-adic numbers \mathbb{Q}_{p} contain the p-adic integers \mathbb{Z}_{p} and the nonnegative integers $\mathbb{Z}_{\geq 0}$.

$$
\begin{aligned}
& \mathbb{Q}_{p}=\left\{a_{-\ell} p^{-\ell}+a_{-\ell+1} p^{-\ell+1}+a_{-\ell+2} p^{-\ell+2}+\cdots \mid \ell \in \mathbb{Z}, a_{j} \in \frac{\mathbb{Z}}{p \mathbb{Z}}\right\} \\
& \cup \mid \\
& \mathbb{Z}_{p}=\left\{a_{0} p^{0}+a_{1} p^{1}+a_{2} p^{2}+\cdots \left\lvert\, a_{j} \in \frac{\mathbb{Z}}{p \mathbb{Z}}\right.\right\} \\
& \cup \mid \\
& \mathbb{Z}_{\geq 0}=\left\{a_{0} p^{0}+a_{1} p^{1}+a_{2} p^{2}+\cdots \left\lvert\, a_{j} \in \frac{\mathbb{Z}}{p \mathbb{Z}}\right. \text { and all but a finite number of the } a_{j} \text { are } 0\right\}
\end{aligned}
$$

where $\frac{\mathbb{Z}}{p \mathbb{Z}}=\{0,1,2, \ldots, p-2, p-1\}$ and the addition and multiplication in \mathbb{Q}_{p} and \mathbb{Z}_{p} are compatible with the addition and multiplication in \mathbb{Z}.

17.1.3 Extended polynomials

Let t be a variable.
The rational functions $\mathbb{R}((t))$ contain the formal power series $\mathbb{R}[[t]]$ and the polynomials $\mathbb{R}[t]$.

$$
\begin{aligned}
\mathbb{R}((t)) & =\left\{a_{-\ell} t^{-\ell}+a_{-\ell+1} t^{-\ell+1}+a_{-\ell+2} t^{-\ell+2}+\cdots \mid \ell \in \mathbb{Z}, a_{j} \in \mathbb{R}\right\} \\
\cup \mid & \\
\mathbb{R}[[t]] & =\left\{a_{0} t^{0}+a_{1} t^{1}+a_{2} t^{2}+\cdots \mid a_{j} \in \mathbb{R}\right\} \\
\cup \mid & \\
\mathbb{R}[t] & =\left\{a_{0} t^{0}+a_{1} t^{1}+a_{2} t^{2}+\cdots \mid a_{j} \in \mathbb{R} \text { and all but a finite number of the } a_{j} \text { are } 0\right\},
\end{aligned}
$$

where \mathbb{R} is the real numbers and the addition and multiplication in $\mathbb{R}((t))$ and $\mathbb{R}[[t]]$ are compatible with the addition and multiplication in \mathbb{R}.

17.1.4 Some examples to check.

In \mathbb{R},

$$
\begin{aligned}
\frac{1}{2} & =.5000000 \ldots=5 \cdot 10^{-1}+0 \cdot 10^{-2}+0 \cdot 10^{-3}+\cdots \\
-1 & =-\left(1 \cdot 10^{0}+0 \cdot 10^{-1}+0 \cdot 10^{-2}+\cdots\right) \\
\pi & =3.1415926 \ldots=3 \cdot 10^{0}+1 \cdot 10^{-1}+4 \cdot 10^{-2}+\cdots \\
1 & =1.00000 \ldots=1 \cdot 10^{0}+0 \cdot 10^{-1}+0 \cdot 10^{-2}+\cdots \\
& =0.999999=9 \cdot 10^{-1}+9 \cdot 10^{-2}+9 \cdot 10^{-3}+9 \cdot 10^{-4}+\cdots
\end{aligned}
$$

In \mathbb{Q}_{7},

$$
\begin{aligned}
888 & =6+0 \cdot 7+4 \cdot 7^{2}+1 \cdot 7^{3}+0 \cdot 7^{4}+0 \cdot 7^{5}+0 \cdot 7^{6}+\cdots, \\
-\frac{1}{6} & =\frac{1}{1-7}=1+1 \cdot 7+1 \cdot 7^{2}+1 \cdot 7^{3}+1 \cdot 7^{4}+\cdots, \\
-1 & =6 \cdot\left(-\frac{1}{6}\right)=6+6 \cdot 7+6 \cdot 7^{2}+6 \cdot 7^{3}+6 \cdot 7^{4}+\cdots \\
\frac{1}{2} & =1+3 \cdot\left(-\frac{1}{6}\right)=4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots, \\
-6 & =1+7 \cdot(-1)=1+6 \cdot 7+6 \cdot 7^{2}+6 \cdot 7^{3}+6 \cdot 7^{4}+\cdots,
\end{aligned}
$$

In $\mathbb{R}((t))$,

$$
\begin{aligned}
\frac{1}{1-t} & =1+t+t^{2}+t^{3}+t^{4}+\cdots \\
e^{t} & =1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\frac{1}{4!} t^{4}+\cdots \\
\sin t & =t-\frac{1}{3!} t^{3}+\frac{1}{5!} t^{5}-\frac{1}{7!} t^{7}+\cdots \\
\frac{1}{t^{3}(1-t)} & =t^{-3}+t^{-2}+t^{-1}+t+t^{2}+\cdots
\end{aligned}
$$

17.1.5 \mathbb{R} and \mathbb{Q}_{p} and $\mathbb{R}((t))$ are metric spaces

Fix a number $e \in \mathbb{R}_{>0}$.
If $x, y \in \mathbb{R}$ the distance between x and y is

$$
\begin{gathered}
d(x, y)=e^{-\operatorname{val}_{1 / 10}(y-x)}, \quad \text { where } \\
\operatorname{val}_{1 / 10}\left(\pm\left(a_{\ell}\left(\frac{1}{10}\right)^{\ell}+a_{\ell-1}\left(\frac{1}{10}\right)^{\ell+1}+a_{l-2}\left(\frac{1}{10}\right)^{\ell+2}+\cdots\right)\right)=\ell
\end{gathered}
$$

if $\ell \in \mathbb{Z}$ is minimal such that $a_{\ell} \neq 0$.
If $x, y \in \mathbb{Q}_{p}$ then the distance between x and y is

$$
d(x, y)=e^{-\operatorname{val}_{p}(y-x)}, \quad \text { where } \quad \operatorname{val}_{p}\left(a_{\ell} p^{\ell}+a_{\ell+1} p^{\ell+1}+a_{\ell+2} p^{\ell+2}+\cdots\right)=\ell
$$

if $\ell \in \mathbb{Z}$ is minimal such that $a_{\ell} \neq 0$.
If $x, y \in \mathbb{R}((t))$ then the distance between x and y is

$$
d(x, y)=e^{-\operatorname{val}_{t}(y-x)} \quad \text { where } \quad \operatorname{val}_{t}\left(a_{\ell} t^{\ell}+a_{\ell+1} t^{\ell+1}+a_{\ell+2} t^{\ell+2}+\cdots\right)=\ell
$$

if $\ell \in \mathbb{Z}$ is minimal such that $a_{\ell} \neq 0$.

17.2 The number systems $\mathbb{Z}_{\geq 0}, \mathbb{Q}_{\geq 0}$ and $\mathbb{R}_{\geq 0}$

17.2.1 The nonnegative integers $\mathbb{Z}_{\geq 0}$

The positive integers is the set

$$
\mathbb{Z}_{>0}=\{1,1+1,1+1+1,1+1+1+1, \ldots\}
$$

with addition given by concatenation so that, for example,

$$
(1+1+1)+(1+1+1+1)=1+1+1+1+1+1+1
$$

The positive integers are often written as

$$
\mathbb{Z}_{>0}=\{1,2,3, \ldots\} \quad \text { and } \quad \mathbb{Z}_{\geq 0}=\{0,1,2,3, \ldots\}
$$

is the set of nonnegative integers with addition determined by the addition in $\mathbb{Z}_{>0}$ and the condition

$$
\text { if } \quad x \in \mathbb{Z}_{\geq 0} \quad \text { then } \quad 0+x=x \quad \text { and } \quad x+0=x .
$$

Define a relation on $\mathbb{Z}_{\geq 0}$ by

$$
x \leq y \quad \text { if there exists } n \in \mathbb{Z}_{\geq 0} \text { such that } x+n=y .
$$

17.2.2 The nonnegative rational numbers $\mathbb{Q}_{\geq 0}$

The nonnegative rational numbers is the set

$$
\mathbb{Q}_{\geq 0}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}_{\geq 0}, b \neq 0\right\} \quad \text { with } \quad \frac{a}{b}=\frac{c}{d} \quad \text { if } \quad a d=b c,
$$

and with addition and multiplication given by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} .
$$

Define a relation on $\mathbb{Q} \geq 0$ by

$$
x \leq y \quad \text { if there exists } a \in \mathbb{Q} \geq 0 \text { such that } x+a=y .
$$

If $x, y \in \mathbb{Q} \geq 0$ define

$$
d(x, y)=a \quad \text { where } a \in \mathbb{Q}_{\geq 0} \text { is such that } x+a=y \text { or } y+a=x .
$$

Let $\mathbb{E}=\left\{10^{-1}, 10^{-2}, 10^{-3}, \ldots\right\}$ and let $\epsilon \in \mathbb{E}$. The ϵ-diagonal in $\mathbb{Q}>0$ is

$$
B_{\epsilon}=\left\{(x, y) \in \mathbb{Q}_{\geq 0} \times \mathbb{Q}_{\geq 0} \mid d(x, y)<\epsilon\right\} .
$$

Let $a \in \mathbb{Q} \geq 0$ and $\epsilon \in \mathbb{E}$. The ϵ-ball at a is

$$
B_{\epsilon}(a)=(a-\epsilon, a+\epsilon)=\left\{x \in \mathbb{Q}_{\geq 0} \mid a-\epsilon<x<a+\epsilon\right\} .
$$

Let $\mathcal{B}=\left\{B_{\epsilon}(a) \mid \epsilon \in \mathbb{E}, a \in \mathbb{Q} \geq 0\right\}$.
$U \subseteq \mathbb{Q} \geq 0$ is an open set in $\mathbb{Q} \geq 0$ if \quad there exists $\mathcal{S} \subseteq \mathcal{B}$ such that $U=\bigcup_{B \in \mathcal{S}} B$.
$N \subseteq \mathbb{Q} \geq 0$ is a neighborhood of x if there exists $\epsilon \in \mathbb{Q}>0$ such that $N \supseteq B_{\epsilon}(x)$.
The topology on $\mathbb{Q} \geq 0$ is the collection of open sets of $\mathbb{Q}_{\geq 0}$.

17.2.3 The nonnegative real numbers $\mathbb{R}_{\geq 0}$

The nonnegative real numbers is the set of decimal expansions

$$
\mathbb{R}_{\geq 0}=\left\{z . d_{1} d_{2} d_{3} \ldots \mid z \in \mathbb{Z}_{\geq 0}, d_{i} \in\{0, \ldots, 9\}\right\}
$$

with a condition that $z .9999 \ldots=(z+1) .0000$ if $z \in \mathbb{Z}_{\geq 0}$, and

$$
z \cdot d_{1} \ldots d_{k+1} d_{k} 9999 \ldots=z \cdot d_{1} \ldots d_{k+1}\left(d_{k}+1\right) 000 \ldots, \quad \text { if } z \in \mathbb{Z}_{\geq 0} \text { and } d_{k} \neq 9
$$

For example $0.9999 \ldots=1.0000 \ldots$. .
Identify a nonnegative real number $a=z \cdot d_{1} d_{2} d_{3} \ldots$ with a series

$$
a=z+\sum_{k \in \mathbb{Z}_{>0}} d_{k}\left(\frac{1}{10}\right)^{k} \quad \text { which is really a notation for the sequence } \quad\left(z, z+s_{1}, z+s_{2}, \ldots\right)
$$

where

$$
s_{1}=d_{1} \frac{1}{10}, \quad s_{2}=d_{1} \frac{1}{10}+d_{2}\left(\frac{1}{10}\right)^{2}, \quad s_{3}=d_{1} \frac{1}{10}+d_{2}\left(\frac{1}{10}\right)^{2}+d_{3}\left(\frac{1}{10}\right)^{3}, \quad \ldots
$$

Thus a decimal expansion is really a series, which is really a sequence of elements of $\mathbb{Q} \geq 0$. The sequence

$$
a=\left(a_{1}, a_{2}, \ldots\right)=\left(z+s_{1}, z+s_{2}, \ldots\right) \quad \text { satisfies } \quad \begin{array}{ll}
\text { if } k \in \mathbb{Z}_{>0} \text { and } n, m \in \mathbb{Z}_{\geq(k+1)} \\
& \text { then } d\left(a_{m}, a_{n}\right)<10^{-k}
\end{array}
$$

In order to describe the addition and multiplication on $\mathbb{R}_{\geq 0}$, consider

$$
\widehat{\mathbb{Q}}_{\geq 0}=\left\{a=\left(a_{1}, a_{2}, \ldots\right) \mid a_{i} \in \mathbb{Q} \geq 0 \text { and }\left(a_{1}, a_{2}, \ldots\right) \text { is Cauchy }\right\}
$$

where a sequence $\left(a_{1}, a_{2}, \ldots\right)$ in $\mathbb{Q}_{\geq 0}$ is Cauchy if it satisfies
if $k \in \mathbb{Z}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{>N}$ then $d\left(a_{m}, a_{n}\right)<10^{-k}$.
Define $\left(a_{1}, a_{2}, \ldots\right)=\left(b_{1}, b_{2}, \ldots\right)$ if the sequences $\left(a_{1}, a_{2}, \ldots\right)$ and $\left(b_{1}, b_{2}, \ldots\right)$ satisfy
if $k \in \mathbb{Z}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d\left(a_{n}, b_{n}\right)<10^{-k}$.
An equivalent way to say this is that $\left(a_{1}, a_{2}, \ldots\right)=\left(b_{1}, b_{2}, \ldots\right)$ if $\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right)=0$.
With these definitions, then define addition and multiplication on $\widehat{\mathbb{Q}}_{\geq 0}$ by

$$
\begin{align*}
\left(a_{1}, a_{2}, \ldots\right)+\left(b_{1}, b_{2}, \ldots\right) & =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right) \quad \text { and } \quad \text { (Rge0plusdefn) } \\
\left(a_{1}, a_{2}, \ldots\right) \cdot\left(b_{1}, b_{2}, \ldots\right) & =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots\right), \tag{Rge0multdefn}
\end{align*}
$$

and define $\left(a_{1}, a_{2}, \ldots\right)<\left(b_{1}, b_{2}, \ldots\right)$

$$
\text { if there exists } N \in \mathbb{Z}_{>0} \text { such that if } n \in \mathbb{Z}_{\geq N} \text { then } a_{n}<b_{n} \text {. }
$$

(Rge0orderdefn)
The point is that $\mathbb{R}_{\geq 0}$ is the same as $\widehat{\mathbb{Q}}_{\geq 0}$: If

$$
a=\left(a_{1}, a_{2}, \ldots\right) \in \widehat{\mathbb{Q}} \geq 0 \quad \text { then let } z=\left\lfloor a_{1}\right\rfloor \text { and } d_{k}=\left\lfloor 10^{k} a_{N_{k}}\right\rfloor \bmod 10
$$

where, if $k \in \mathbb{Z}_{>0}$ then $N_{k} \in \mathbb{Z}_{>0}$ is such that if $m, n \in \mathbb{Z}_{\geq N_{k}}$ then $d\left(a_{m}, a_{n}\right)<10^{-k}$. This produces a decimal expansion $z \cdot d_{1} d_{2} d_{3} \ldots$ such that the corresponding sequence is equal to a. So, a decimal expansion is a Cauchy sequence and a Cauchy sequence is a decimal expansion.

Regarding $\mathbb{R}_{\geq 0}$ as $\widehat{\mathbb{Q}}_{\geq 0}$, define a function $\iota: \mathbb{Q}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
\iota(x)=(x, x, x, \ldots), \quad \text { which is a Cauchy sequence in } \mathbb{Q} \geq 0
$$

Define $d: \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
d(x, y)=z, \quad \text { where } z \in \mathbb{R}_{\geq 0} \text { is such that } x+z=y \text { or } y+z=x
$$

In terms of decimal expansions, the order relation on $\mathbb{R}_{\geq 0}$ is given by

$$
x \leq y \quad \text { if } x \text { is less than or equal to } y \text { in lexicographic order. }
$$

Propositions $17.1,17.2,17.3,17.4$ and 17.5 are all consequences of the analogous statements for $\mathbb{Q}_{\geq 0}$, and the definitions of addition, multiplication and the order in $\mathbb{R}_{\geq 0}$ as given in Rge0plusdefn), (Rge0multdefn), and Rge0orderdefn.

Proposition 17.1. ($\mathbb{R}_{\geq 0}$ is a field without subtraction)
Let $0=0.0000 \ldots$ and $1=1.0000 \ldots$.
(a) If $x, y, z \in \mathbb{R}_{\geq 0}$ then $(x+y)+z=x+(y+z)$.
(b) If $x \in \mathbb{R}_{\geq 0}$ then $0+x=x$ and $x+0=x$.
(c) If $x, y \in \mathbb{R}_{\geq 0}$ then $x+y=y+x$.
(d) If $x, y, z \in \mathbb{R}_{\geq 0}$ then $(x y) z=x(y z)$.
(e) If $x \in \mathbb{R}_{\geq 0}$ then $1 \cdot x=x$ and $x \cdot 1=x$.
(f) If $x \in \mathbb{R}_{\geq 0}$ and $x \neq 0$ then there exists $x^{-1} \in \mathbb{R}_{\geq 0}$ such that $x \cdot x^{-1}=1$ and $x^{-1} \cdot x=1$.
(g) If $x, y \in \mathbb{R}_{\geq 0}$ then $x y=y x$.
(h) If $x, y, z \in \mathbb{R}_{\geq 0}$ then $x(y+z)=x y+x z$.

Proposition 17.2. ($\mathbb{Q}_{\geq 0}$ inside $\mathbb{R}_{\geq 0}$)
(a) if $x, y \in \mathbb{Q}_{\geq 0}$ then $\iota(x+y)=\iota(x)+\iota(y)$.
(b) If $x, y \in \mathbb{Q} \geq 0$ then $\iota(x y)=\iota(x) \iota(y)$.
(c) If $x, y \in \mathbb{Q}_{\geq 0}$ then $\iota(x)<\iota(y)$ if and only if $x<y$.
(d) ι is injective.

Proposition 17.3. (\leq is a total order on $\mathbb{R}_{\geq 0}$)
(a) If $x \in \mathbb{R}_{\geq 0}$ then $x \leq x$.
(b) If $x, y \in \mathbb{R}_{\geq 0}$ then $x \leq y$ or $y \leq x$.
(c) If $x, y \in \mathbb{R}_{\geq 0}$ and $x \leq y$ and $y \leq x$ then $x=y$.
(d) If $x, y, z \in \mathbb{R}_{\geq 0}$ and $x \leq y$ and $y \leq z$ then $x \leq z$.

Proposition 17.4. (addition multiplication and the order)
(a) If $x, y, z \in \mathbb{R}_{\geq 0}$ and $x \leq y$ then $x+z \leq y+z$.
(b) If $x, y \in \mathbb{R}_{\geq 0}$ then $x y \in \mathbb{R}_{\geq 0}$.

Proposition 17.5. (d is a metric on $\mathbb{R}_{\geq 0}$)
(a) Let $x, y \in \mathbb{R}_{>0}$. Then there exists a unique $z \in \mathbb{R}_{\geq 0}$ such that $x+z=y$ or $y+z=x$.
(b) If $x \in \mathbb{R}_{\geq 0}$ then $d(x, x)=0$.
(c) If $x, y \in \mathbb{R}_{\geq 0}$ and $d(x, y)=0$ then $x=y$.
(d) If $x, y \in \mathbb{R}_{\geq 0}$ then $d(x, y)=d(y, x)$.
(e) If $x, y, z \in \mathbb{R}_{\geq 0}$ then $d(x, y) \leq d(x, z)+d(z, y)$.

Next are important properties of $\mathbb{R}_{\geq 0}$ which do not come so directly from analogous properties of $\mathbb{Q}_{\geq 0}$.
Proposition 17.6. (The function $\iota: \mathbb{Q}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is not surjective)
(a) There exists $z \in \mathbb{R}_{\geq 0}$ such that $z^{2}=2$.
(b) If $z \in \mathbb{R}_{\geq 0}$ and $z^{2}=2$ then $z \notin \mathbb{Q}_{\geq 0}$.

Proposition 17.7. ($\mathbb{Q} \geq 0$ and the order on $\mathbb{R}_{\geq 0}$)
(a) If $a, b \in \mathbb{R}_{\geq 0}$ and $a<b$ then there exists $c \in \mathbb{Q}_{\geq 0}$ such that $a<c<b$.
(b) If $a, b \in \mathbb{R}_{\geq 0}$ and $a<b$ then there exists $c \in\left(\mathbb{R}_{\geq 0}-\mathbb{Q}_{\geq 0}\right)$ such that $a<c<b$.

Theorem 17.8. (Archimedes' property)
If $x, y \in \mathbb{R}_{\geq 0}$ then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $y<n x$.
Theorem 17.9. (The least upper bound property)
(a) If $A \subseteq \mathbb{R}_{\geq 0}$ and $A \neq \emptyset$ and A is bounded then $\sup (A)$ exists in $\mathbb{R}_{\geq 0}$.

Proposition 17.10.

(a) If $\left(a_{1}, a_{2}, \ldots\right)$ is an increasing and bounded sequence in $\mathbb{R}_{\geq 0}$ then $\left(a_{1}, a_{2}, \ldots\right)$ converges to $\sup \left\{a_{1}, a_{2}, \ldots\right\}$.
(b) $\overline{\mathbb{Q} \geq 0}=\mathbb{R}_{\geq 0}$.

Theorem 17.11. Let $n \in \mathbb{Z}_{>0}$. The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous, bijective, and satisfies

$$
\text { if } x, y \in \mathbb{R}_{\geq 0} \text { and } x<y \quad \text { then } \quad x^{n}<y^{n} .
$$

Furthermore, the inverse function $x^{\frac{1}{n}}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous.

The standard uniformity on $\mathbb{R}_{\geq 0}$ is

$$
\begin{aligned}
\mathcal{X} & =\left\{\text { subsets of } \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \text { which contain a set } B_{\epsilon}\right\}, \quad \text { where } \\
B_{\epsilon} & =\left\{(x, y) \in \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \mid d(x, y)<\epsilon\right\} \quad \text { for } \epsilon \in\left\{10^{-1}, 10^{-2}, \ldots\right\}
\end{aligned}
$$

The standard topology on $\mathbb{R}_{\geq 0}$ is

$$
\mathcal{T}=\{\text { unions of open balls }\}
$$

where the set of open balls is $\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in\left\{10^{-1}, 10^{-2}, \ldots\right\}, x \in \mathbb{R}_{\geq 0}\right\}$ and

$$
B_{\epsilon}(x)=\left\{y \in \mathbb{R}_{\geq 0} \mid d(x, y)<\epsilon\right\} \quad \text { is the } \epsilon \text {-ball at } x \text {. }
$$

Proposition 17.12. (Topological properties of $\mathbb{R}_{\geq 0}$)
(a) $\mathbb{R}_{\geq 0}$ is a Hausdorff topological space.
(b) $\mathbb{R}_{\geq 0}$ is a complete metric space.
(c) $\mathbb{R}_{\geq 0}$ is locally compact.
(d) $\mathbb{R}_{\geq 0}$ is not compact.

An interval in $\mathbb{R}_{\geq 0}$ is a set $A \subseteq \mathbb{R}_{\geq 0}$ such that

$$
\text { if } x, y \in A \text { and } z \in \mathbb{R}_{\geq 0} \text { and } x<z<y \text { then } z \in A
$$

Theorem 17.13. Let $A \subseteq \mathbb{R}_{\geq 0}$.
(a) A is connected if and only if A is an interval.
(b) A is compact if and only if A is closed and bounded.

17.3 Some proofs

17.3.1 Relations between $\mathbb{Q} \geq 0$ and $\mathbb{R}_{\geq 0}$

Proposition 17.14. (The function $\iota: \mathbb{Q} \geq 0 \rightarrow \mathbb{R}_{\geq 0}$ is not surjective)
(a) There exists $z \in \mathbb{R}_{\geq 0}$ such that $z^{2}=2$.
(b) If $z \in \mathbb{R}_{\geq 0}$ and $z^{2}=2$ then $z \notin \mathbb{Q} \geq 0$.

Proof. (Sketch)
(a) Noting that $1^{2}=1<2$ and $2^{2}=4>2$, let $z_{1}=1$.

Noting that $14^{2}=196<200$ and $15^{2}=225>200$, let $z_{2}=1.4$.
Noting that $141^{2}=19881<20000$ and $142^{2}=20164>20000$, let $z_{3}=1.41$.
In general, for $k \in \mathbb{Z}_{\geq 0}$ let $a_{k} \in \mathbb{Z}_{>0}$ be maximal such that $a_{k}^{2}<2 \cdot 10^{2 k}$ and let $z_{k+1}=10^{-k} a_{k}$.
Then $z=\left(z_{1}, z_{2}, \ldots\right) \in \mathbb{R}_{\geq 0}$ and $z^{2}=2$.
(b) If $z=p / q \in \mathbb{Q} \geq 0$ with p / q in reduced form then $2 q^{2}=p^{2}$ which implies 2 divides p which implies 2 divides q, which is a contradiction to p / q being reduced. THIS HEAVILY USES THE FACT THAT \mathbb{Z} IS A UNIQUE FACTORIZATION DOMAIN. DO YOU KNOW HOW TO PROVE THAT \mathbb{Z} IS A UNIQUE FACTORIZATION DOMAIN??

Proposition 17.15. ($\mathbb{Q} \geq 0$ and the order on $\mathbb{R} \geq 0$)
(a) If $a, b \in \mathbb{R} \geq 0$ and $a<b$ then there exists $c \in \mathbb{Q} \geq 0$ such that $a<c<b$.
(b) If $a, b \in \mathbb{R}_{\geq 0}$ and $a<b$ then there exists $c \in\left(\mathbb{R}_{\geq 0}-\mathbb{Q} \geq 0\right)$ such that $a<c<b$.

Proof.
(a) If $a, b \in \mathbb{R}_{\geq 0}$ and $a<b$.

To show: There exists $c \in \mathbb{Q} \geq 0$ such that $a<c<b$.
Let $x \in \mathbb{R} \geq 0$ such that $b=a+x$.
Let $k \in \mathbb{Z}_{>0}$ such that $10^{-k}<x$
(i.e. if $x=z . d_{1} d_{2} d_{3} \ldots$ then let $n \in \mathbb{Z}_{>0}$ such that $d_{n} \neq 0$ and let $k=n+1$).

Let $c=a+10^{-k}$.
Since $a<a+10^{-k}<a+x=b$ then $a<c<b$.
(b) Since $\sqrt{2} \in \mathbb{R}_{\geq 0}-\mathbb{Q} \geq 0$ then $c \in \mathbb{R} \geq 0-\mathbb{Q} \geq 0$.

Let $x \in \mathbb{R} \geq 0$ such that $b=a+x$.
Let $k \in \mathbb{Z}_{>0}$ such that $10^{-k}<x$
Let $c=a+10^{-k} \frac{\sqrt{2}}{2}$.
Since $a<a+10^{-k} \frac{\sqrt{2}}{2}<a+10^{-k}<a+x=b$ then $a<c<b$.
17.3.2 Archimedes' property and the least upper bound property

Theorem 17.16. (Archimedes' property)
If $x, y \in \mathbb{R}_{\geq 0}$ then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $y<n x$.

Proof. Assume $x, y \in \mathbb{R}_{>0}$.
To show: There exists $n \in \mathbb{Z}_{>0}$ such that $y<n x$.
Using Proposition 17.7 (a), there exist $\frac{p}{q} \in \mathbb{Q}>0$ and $\frac{r}{s} \in \mathbb{Q}>0$ such that

$$
0<\frac{p}{q}<x \quad \text { and } \quad y<\frac{r}{s}
$$

Let $n \in \mathbb{Z}_{>0}$ be such that $n p s>q r$.
Then

$$
y<\frac{r q}{s q}<\frac{n s p}{s q}=n x
$$

Theorem 17.17. (The least upper bound property)
(a) If $A \subseteq \mathbb{R}_{\geq 0}$ and $A \neq \emptyset$ and A is bounded then $\sup (A)$ exists in $\mathbb{R}_{\geq 0}$.

Proof. (Sketch) If $a=z d_{1} d_{2} d_{3} \ldots$ is the decimal expansion of a and $k \in \mathbb{Z}_{>0}$ then let

$$
a_{k}=z \cdot d_{1} d_{2} \cdots d_{k} \in \mathbb{Q}_{\geq 0} \quad \text { (this is the } k \text { th element of the sequence corresponding to } a \text {). }
$$

For $k \in \mathbb{Z}_{>0}$, define

$$
A_{k}=\left\{a_{k} \mid a \in A\right\} \quad \text { so that } \quad A_{k} \subseteq \mathbb{Q}_{\geq 0} \quad \text { and } \quad \operatorname{Card}\left(A_{k}\right) \leq 10^{k}
$$

Fro $k \in \mathbb{Z}_{>0}$ let Let

$$
z_{k}=\max \left(A_{k}\right), \quad \text { and let } \quad z=\left(z_{1}, z_{2}, \ldots\right)
$$

Check that $z=\left(z_{1}, z_{2}, \ldots\right)$ is a Cauchy sequence in $\mathbb{Q} \geq 0$ and then check the defining conditions for $\sup (A)$ to complete the proof that the element of $\mathbb{R}_{\geq 0}$ given by the Cauchy sequence $z=\left(z_{1}, z_{2}, \ldots\right)$ is $\sup (A)$.

17.3.3 Convergence and continuity in $\mathbb{R}_{\geq 0}$

Proposition 17.18.

(a) If $\left(a_{1}, a_{2}, \ldots\right)$ is an increasing and bounded sequence in $\mathbb{R}_{\geq 0}$ then $\left(a_{1}, a_{2}, \ldots\right)$ converges to $\sup \left\{a_{1}, a_{2}, \ldots\right\}$.
(b) $\overline{\mathbb{Q}_{\geq 0}}=\mathbb{R}_{\geq 0}$.

Proof.
(a) Let $\left(a_{1}, a_{2}, \ldots\right)$ be a sequence in \mathbb{R} such that $a_{1} \leq a_{2} \leq \cdots$ and there exists $b \in \mathbb{R}$ such that if $i \in \mathbb{Z}_{>0}$ then $a_{i}<b$.
By the least upper bound property (Proposition 17.9), since $A=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded then $\sup \left\{a_{1}, a_{2}, \ldots\right\}$ exists.
Let $c=\sup \left\{a_{1}, a_{2}, \ldots\right\}$.
To show: $\lim _{n \rightarrow \infty} a_{n}=c$.
To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $\left|c-a_{n}\right|<\epsilon$.
Assume $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $\left|c-a_{n}\right|<\epsilon$.
Using that $c-\epsilon$ is not an upper bound, let $\ell \in \mathbb{Z}_{>0}$ be such that $a_{\ell}>c-\epsilon$.
If $n \in \mathbb{Z}_{\geq \ell}$ then $a_{n} \geq a_{\ell}$ and so $c-a_{n} \leq c-a_{\ell}<\epsilon$.

So $\lim _{n \rightarrow \infty} a_{n}=c$.
So $\lim _{n \rightarrow \infty} a_{n}=\sup \left\{a_{1}, a_{2}, \ldots\right\}$.
(b) Let $x=z . d_{1} d_{2} \ldots \in \mathbb{R}_{\geq 0}$.

Let $x_{k}=z . d_{1} d_{2} \ldots d_{k}$ be the first k decimal places of x.
Then $\left(x_{1}, x_{2}, \ldots\right)$ is a sequence in $\mathbb{R}_{\geq 0}$ such that $\lim _{k \rightarrow \infty} x_{k}=x$.
So $\mathbb{R}_{\geq 0} \subseteq \overline{\mathbb{Q}} \mathbf{Q}^{2}$.
Since $\overline{\mathbb{Q} \geq 0}$ means closure of $\mathbb{Q}_{\geq 0}$ in $\mathbb{R}_{\geq 0}$ then $\overline{\mathbb{Q} \geq 0} \subseteq \mathbb{R}_{\geq 0}$.
So $\overline{\mathbb{Q} \geq 0}=\mathbb{R}_{\geq 0}$.

Theorem 17.19. Let $n \in \mathbb{Z}_{>0}$. The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous, bijective, and satisfies

$$
\text { if } x, y \in \mathbb{R}_{\geq 0} \text { and } x<y \quad \text { then } \quad x^{n}<y^{n} .
$$

Furthermore, the inverse function $x^{\frac{1}{n}}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous.
Proof. (Sketch)
To show: (a) The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is monotone.
(b) The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is injective.
(c) The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is surjective.
(d) The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous.
(e) The inverse function $x^{1 / n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ exists and is continuous.
(a) Assume $x, y \in \mathbb{R}_{\geq 0}$ and $x<y$.

Then there exists $z \in \mathbb{R}_{\geq 0}$ such that $x+z=y$.
Using the binomial theorem,

$$
x^{n}<x^{n}+z^{n}<x^{n}+\left(\sum_{j=1}^{n-1}\binom{n}{j} x^{n-j} y^{j}\right)+y^{n}=(x+z)^{n}=y^{n}
$$

So the function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is monotone.
(b) Assume $x, y \in \mathbb{R}_{\geq 0}$ and $x \neq y$.

By (a), if $x<y$ then $x^{n}<y^{n}$ and $x^{n} \neq y^{n}$ and if $x>y$ then $x^{n}>y^{n}$ and $x^{n} \neq y^{n}$.
So the function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ then the function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is injective.
(c) To show: The function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is surjective.

To show: If $z \in \mathbb{R}_{\geq 0}$ then there exists $x \in \mathbb{R}_{\geq 0}$ such that $x^{n}=z$.
Assume $z \in \mathbb{R}_{\geq 0}$.
By the least upper bound property (Proposition 17.9), $z=\sup \left\{y \in \mathbb{R}_{\geq 0} \mid y^{n}<x\right\}$ exists in $\mathbb{R}_{\geq 0}$.
Then $z^{n}=x$.
So the function $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is surjective.
(d) To show: If $a \in \mathbb{R}_{\geq 0}$ then $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous at a.

Assume $a \in \mathbb{R}_{\geq 0}$.
To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $y \in \mathbb{R}_{\geq 0}$ and $d(y, a)<\delta$ then $d\left(y^{n}, a^{n}\right)<\epsilon$.
Assume $\epsilon \in \mathbb{E}$.

To show: There exists $\delta \in \mathbb{E}$ such that if $d(y, a)<\delta$ then $d\left(y^{n}, a^{n}\right)<\epsilon$.
Let $\delta=\frac{1}{2^{n} a^{n-1}} \epsilon$.
Letting $d=d(a, y)$ then

$$
\begin{aligned}
d\left(y^{n}, a^{n}\right) & =\left|y^{n}-a^{n}\right|=\left|(a+d)^{n}-a^{n}\right|=d a^{n-1} \cdot\left(\sum_{j=1}^{n} \frac{d^{j-1}}{a^{j-1}}\binom{n}{j}\right) \\
& <d a^{n-1}\left(\sum_{j=1}^{n}\binom{n}{j}\right)=d a^{n-1}\left(2^{n}-1\right)<\delta 2^{n} a^{n-1}=\epsilon
\end{aligned}
$$

(What is at the core of this is that the distance $d\left(y^{n}, a^{n}\right)$ is related to the distance $d(y, a)$ by

$$
d(y, a) a^{n-1} n<d\left(y^{n}, a^{n}\right)<d(y, a) a^{n-1}\left(2^{n}-1\right)
$$

So $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous at a.
So $x^{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous.
(e) To show: If $b \in \mathbb{R}_{\geq 0}$ then $x^{\frac{1}{n}}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous at b.

Assume $b \in \mathbb{R}_{\geq 0}$.
To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $z \in \mathbb{R}_{\geq 0}$ and $d(z, b)<\delta$ then $d\left(z^{\frac{1}{n}}, b^{\frac{1}{n}}\right)<\epsilon$.
Assume $\epsilon \in \mathbb{E}$.
Let $\delta=n a^{n-1} \epsilon^{n}$.
To show: If $z \in \mathbb{R}_{\geq 0}$ and $d(z, b)<\delta$ then $d\left(z^{\frac{1}{n}}, b^{\frac{1}{n}}\right)<\epsilon$.
Assume $z \in \mathbb{R}_{\geq 0}$ and $d(z, b)<\delta$.
To show: $d\left(z^{\frac{1}{n}}, b^{\frac{1}{n}}\right)<\epsilon$.
Let $a=b^{1 / n}$ and $y=z^{1 / n}$. Then

$$
d\left(z^{1 / n}, b^{1 / n}\right)=d(y, a)<\frac{1}{n a^{n-1}} d\left(y^{n}, a^{n}\right)=\frac{1}{n a^{n-1}} d(z, b)<\frac{1}{n a^{n-1}} \delta=\epsilon
$$

Since

$$
d\left(y^{n}, a^{n}\right)=\left|y^{n}-a^{n}\right|=\left|(a+d)^{n}-a^{n}\right|=d a^{n-1} \cdot\left(\sum_{j=1}^{n} \frac{d^{j-1}}{a^{j-1}}\binom{n}{j}\right)>d a^{n-1}\binom{n}{1}=d a^{n-1} n
$$

17.3.4 Topological properties of $\mathbb{R}_{\geq 0}$

Proposition 17.20. (Topological properties of $\mathbb{R}_{\geq 0}$)
(a) $\mathbb{R}_{\geq 0}$ is a Hausdorff topological space.
(b) $\mathbb{R}_{\geq 0}$ is a complete metric space.
(c) $\mathbb{R}_{\geq 0}$ is locally compact.
(d) $\mathbb{R}_{\geq 0}$ is not compact.

Proof. (Sketch)
(a) To show: If $x, y \in \mathbb{R}_{\geq 0}$ and $x \neq y$ then there exist open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V=\emptyset$.

Assume $x, y \in \mathbb{R}_{\geq 0}$ and $x \neq y$.
Let $\epsilon=\frac{1}{2} d(x, y)$ and let

$$
U=\mathbb{R}_{(x-\epsilon, x+\epsilon)} \quad \text { and } \quad V=\mathbb{R}_{(y-\epsilon, y+\epsilon)}
$$

Then $x=x+0 \in U$ and $y=y+0 \in V$ and $U \cap V=\emptyset$.
So $\mathbb{R}_{\geq 0}$ is a Hausdorff topological space.
(b) To show: If $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence in $\mathbb{R}_{\geq 0}$ then $\left(x_{1}, x_{2}, \ldots\right)$ converges in $\mathbb{R}_{\geq 0}$.

To show: If $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence in $\mathbb{R}_{\geq 0}$ then there exists $y \in \mathbb{R}_{\geq 0}$ such that $y=\lim _{n \rightarrow \infty} x_{n}$.
Let $\left(x_{1}, x_{2}, \ldots\right)$ be a Cauchy sequence in $\mathbb{R}_{\geq 0}$.

$$
\begin{aligned}
& x_{1}=z_{1} \cdot d_{11} d_{12} d_{13} \ldots, \\
& x_{2}=z_{2} \cdot d_{21} d_{22} d_{23} \ldots, \\
& x_{3}=z_{3} \cdot d_{31} d_{32} d_{33} \ldots,
\end{aligned}
$$

To show: There exists $y \in \mathbb{R}_{\geq 0}$ such that $y=\lim _{n \rightarrow \infty} x_{n}$.
For $k \in \mathbb{Z}_{\geq 0}$ let ℓ_{k} be such that if $m, n \in \mathbb{Z}_{\geq \ell_{k}}$ then $d\left(x_{m}, x_{n}\right) \leq 10^{-k}$.
Let $y=z . d_{1} d_{2} d_{3} \cdots$, where

$$
z=z_{\ell_{0}}, \quad d_{1}=d_{\ell_{1} 1}, \quad d_{2}=d_{\ell_{2} 2}, \quad \ldots
$$

To show: If $k \in \mathbb{Z}_{\geq 0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $m \in \mathbb{Z}_{\geq N}$ then $d\left(x_{m}, y\right)<10^{-k}$.
Assume $k \in \mathbb{Z}_{>0}$.
Let $N=\ell_{k+1}$.
To show: If $m \in \mathbb{Z}_{\geq \ell_{k+1}}$ then $d\left(x_{m}, y\right)<10^{-k}$.
Assume $m \in \mathbb{Z}_{\geq \ell_{k+1}}$.
Then

$$
d\left(x_{m}, y\right) \leq d\left(x_{m}, x_{\ell_{k+1}}\right)+d\left(x_{\ell_{k+1}}, y\right)<10^{-(k+1)}+10^{-(k+1)}<10^{-k}
$$

So $\lim _{k \in \infty} x_{k}=y$.
So Cauchy sequences in $\mathbb{R}_{\geq 0}$ converge.
So $\mathbb{R}_{\geq 0}$ is complete.
This proof is conceptual and easy but there is a little bit of fuzziness in this proof caused by the fact that the decimal expansion of an element of $\mathbb{R}_{\geq 0}$ is not uniquely determined, for example $0.999 \ldots=1.000 \ldots$ To remove this fuzziness use equivalence classes of Cauchy sequences in $\widehat{\mathbb{Q}}_{\geq 0}$ as in the proof that the completion of a metric space is complete.
(c) To show: $\mathbb{R}_{\geq 0}$ is locally compact.

To show: (ca) $\mathbb{R}_{\geq 0}$ is Hausdorff.
(cb) If $x \in \mathbb{R}_{\geq 0}$ then there exists a neighborhood N of x such that N is cover compact.
(ca) By part (b), $\mathbb{R}_{\geq 0}$ is Hausdorff.
(cb) To show: If $x \in \mathbb{R}_{\geq 0}$ then there exists a neighborhood N of x such that N is cover compact. Assume $x \in \mathbb{R}_{\geq 0}$.

Let $N=\overline{B_{1}(x)}=\left\{y \in \mathbb{R}_{\geq 0}| | y-x \mid \leq 1\right\}$.
Since $N \supseteq B_{1}(x)$ and $x \in B_{1}(x)$ then N is a neighborhood of x.
Since $N \subseteq B_{2}(x)$ then N is bounded.
Since N is closed and bounded then N is cover compact.
So $\mathbb{R}_{\geq 0}$ is locally compact.
(d) The sequence $(1,2,3,4, \ldots)$ is a sequence in $\mathbb{R}_{\geq 0}$ that does not have a cluster point. So $\mathbb{R}_{\geq 0}$ is not compact.

An interval in $\mathbb{R}_{\geq 0}$ is a set $A \subseteq \mathbb{R}_{\geq 0}$ such that

$$
\text { if } x, y \in A \text { and } z \in \mathbb{R}_{\geq 0} \text { and } x<z<y \text { then } z \in A
$$

Theorem 17.21. Let $A \subseteq \mathbb{R}_{\geq 0}$.
(a) A is connected if and only if A is an interval.
(b) A is compact if and only if A is closed and bounded.

Proof.
(a) \Rightarrow : Assume E is not an interval.

Let $x, y \in E$ and $z \in E^{c}$ with $\quad x<z<y$.
Let $A=(-\infty, z) \cap E$ and $B=(z, \infty) \cap E$.
Then A and B are open sets of J and, since $x \in A$ and $y \in B$ then

$$
A \neq \emptyset, \quad B \neq \emptyset, \quad A \cap B=\emptyset, \quad \text { and } \quad A \cup B=E
$$

So E is not connected.
(a) \Leftarrow : Assume E is an interval.

To show: E is connected.
Let $A \subseteq E$ and $B \subseteq E$ be open subsets of E such that

$$
A \neq \emptyset, \quad B \neq \emptyset \quad \text { and } \quad A \cup B=E
$$

To show: $A \cap B \neq \emptyset$.
There exists $z \in A \cap B$.
Let $x_{1}, y_{1} \in J$ with $x_{1} \in A$ and $y_{1} \in B$.
Switching A and B if necessary assume that $x_{1}<y_{1}$.
Construct sequences x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots by

$$
\begin{array}{lll}
x_{i+1}=\frac{x_{i}+y_{i}}{2} & \text { and } & y_{i+1}=y_{i},
\end{array} \quad \text { if } \frac{x_{i}+y_{i}}{2} \in A, ~ 子 \quad \text { and } \quad y_{i+1}=\frac{x_{i}+y_{i}}{2}, \quad \text { if } \frac{x_{i}+y_{i}}{2} \in B .
$$

PUT A PICTURE HERE

By induction, $x_{i} \in E$ and $y_{i} \in E$, and since E is an interval, $\frac{1}{2}\left(x_{i}+y_{i}\right) \in E$ so that

$$
x_{i+1} \in E \quad \text { and } \quad y_{i+1} \in E
$$

Also

$$
x_{i+1} \in A, \quad y_{i+1} \in B, \quad x_{i} \leq x_{i+1}<y_{i+1} \leq y_{i}
$$

and

$$
\left|x_{i+1}-y_{i+1}\right| \leq \frac{1}{2}\left|x_{i}-y_{i}\right|, \quad \text { so that } \quad\left|x_{i+1}-y_{i+1}\right| \leq \frac{1}{2^{i}}\left|x_{1}-y_{1}\right|
$$

Theorem 17.10 (a) says that increasing bounded sequences converge, and since the sequence x_{1}, x_{2}, \ldots is increasing and bounded by y_{1}
then $\lim _{n \rightarrow \infty} x_{n}$ exists in \mathbb{R}.
Theorem 17.10 a) says that decreasing bounded sequences converge, and since the sequence y_{1}, y_{2}, \ldots is decreasing and bounded by x_{1}
then $\lim _{n \rightarrow \infty} y_{n}$ exists in \mathbb{R}.
Since $\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0$ then $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.
Let

$$
z=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

Since $x_{1} \leq x_{2} \leq \cdots \leq x_{n}<y_{n} \leq y_{n-1} \leq \cdots \leq y_{1}$ for $n \in \mathbb{Z}_{>0}$ then

$$
x_{1}<z<y_{1}
$$

Since E is an interval, $z \in E$.
By the characterization of closure in metric spaces via limits (Theorem 13.6),

$$
z=\lim _{n \rightarrow \infty} x_{n} \in \bar{A} \quad \text { and } \quad z=\lim _{n \rightarrow \infty} y_{n} \in \bar{B}
$$

Since $\bar{A}=A$ and $\bar{B}=B$ then $z \in A \cap B$.
So $A \cap B \neq \emptyset$.
So E is connected.
(b) By Theorem 4.1, E is compact if E is Cauchy compact and bounded, so

To show: (ba) If $E \subseteq \mathbb{R}$ is bounded then E is ball compact.
(bb) If $E \subseteq \mathbb{R}$ is closed then E is Cauchy compact.
(ba) Assume $E \subseteq \mathbb{R}$ is bounded.
To show: E is ball compact.
Since E is bounded there exists $x \in \mathbb{R}$ and $M \in \mathbb{R}_{>0}$ such that $E \subseteq(x-M, x+M)$.
To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $x_{1}, x_{2}, \ldots, x_{\ell} \in \mathbb{R}$ such that $E \subseteq$ $B_{\epsilon}\left(x_{1}\right) \cup \cdots B_{\epsilon}\left(x_{\ell}\right)$.
Assume $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $\ell \in \mathbb{Z}_{>0}$ and $x_{1}, x_{2}, \ldots, x_{\ell} \in \mathbb{R}$ such that $E \subseteq B_{\epsilon}\left(x_{1}\right) \cup \cdots B_{\epsilon}\left(x_{\ell}\right)$.
Let $\ell \in \mathbb{Z}_{>0}$ such that $\ell \cdot \frac{\epsilon}{2}>2 M$. Let

$$
x_{1}=x-M, \quad x_{2}=x_{1}+\frac{\epsilon}{2}, \quad x_{3}=x_{2}+\frac{\epsilon}{2}, \ldots, x_{\ell}=x_{1}+\ell \frac{\epsilon}{2} .
$$

Then

$$
\begin{aligned}
E & \subseteq(x-M, x+M) \\
& \subseteq\left(x_{1}-\frac{\epsilon}{2}, x_{1}+\frac{\epsilon}{2}\right) \cup\left(x_{2}-\frac{\epsilon}{2}, x_{2}+\frac{\epsilon}{2}\right) \cup \cdots\left(x_{\ell}-\frac{\epsilon}{2}, x_{\ell}+\frac{\epsilon}{2}\right) .
\end{aligned}
$$

DRAW APICTURE

So E is ball compact.
(bb) Assume E is closed.
To show: E is Cauchy compact.
To show: E is complete.
To show: If $\left(a_{1}, a_{2}, \ldots\right)$ is a Cauchy sequence in E then $\left(a_{1}, a_{2}, \ldots\right)$ converges in E.
Assume $\left(a_{1}, a_{2}, \ldots\right)$ is a Cauchy sequence in E.
Then $\left(a_{1}, a_{2}, \ldots\right)$ is a Cauchy sequence in \mathbb{R}.
Since \mathbb{R} is complete then $\lim _{n \rightarrow \infty} a_{n}$ exists in \mathbb{R}.
To show: $\lim _{n \rightarrow \infty} a_{n}$ is an element of E.
Since E is closed,

$$
E=\bar{E}=\left\{z \in \mathbb{R} \mid \text { there exists a sequence }\left(a_{1}, a_{2}, \ldots\right) \text { in } E \text { with } z=\lim _{n \rightarrow \infty} a_{n}\right\}
$$

So $\lim _{n \rightarrow \infty} a_{n} \in \bar{E}=E$.
So $\left(a_{1}, a_{2}, \ldots\right)$ converges in E.
So E is complete.
So E is ball compact and Cauchy compact in the metric space \mathbb{R}.
So E is compact.

17.3.5 Notes and References

AN IMPORTANT QUESTION IS HOW TO COMPUTE EXPLICITLY THE DECIMAL EXPANSIONS OF $a+b, a b$ and a^{-1}. NOTE THAT multiplication is not uniformly continuous. ALSO WE NEED TO VERIFY THAT THESE OPERATIONS ARE WELL DEFINED.

To construct x^{-1} compute 1 divided by x by long division. Alternatively, multiply x by 10^{-k} to get a number y less than 1 and let z be such that $y+z=1$. Then

$$
\frac{1}{x}=\frac{1}{10^{k} y}=10^{-k} \frac{1}{y}=10^{-k} \frac{1}{1-z}=10^{-k}\left(1+z+z^{2}+\ldots\right)
$$

