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17 Number systems

17.1 The number systems R, Q, and R((?))
17.1.1 The real numbers

The real numbers R is the set of decimal expansions.
The real numbers R contain the integers Z.

_ _ - Z
R—{i(a_g () Han () M raa (L) TP+ ez, ajemz}
Y

_ _ 4
ZZ{:I:(QZ(IIO) Z—i—aflJrl (Tl(]) €+1+,..+a_1 (%)—l—ao)‘EEZzo, ajeloz}

where 10% ={0,1,2,3,4,5,6,7,8,9} and the addition and multiplication in R are compatible with the
addition and multiplication in Z.

17.1.2 The p-adic numbers

Let p € Z~o. The p-adic numbers Q, contain the p-adic integers Z, and the nonnegative integers Zx>g.

Z
Qp = {agp_é +aﬁ£+1p—2+1 +a7€+2p—2+2 + ... ‘ LeZ, a; € pZ}

Ul

Ly = {aopo+a1pl+a2p2+--- ‘ a; € Z}
pZ

Yl

Z
T>o = {aopo +aip' + a2p2 4 ‘ aj € 7 and all but a finite number of the a; are 0} ,
N p

where pZ—Z ={0,1,2,...,p—2,p—1} and the addition and multiplication in Q, and Z,, are compatible
with the addition and multiplication in Z.

17.1.3 Extended polynomials

Let ¢t be a variable.

The rational functions R((t)) contain the formal power series R[[t]] and the polynomials R[t].

R((t)) = {a_gt*é ta_ gt da ot | LET, a5 € R}

Ul
R[[t]] = {aoto +art! Fagt? +--- | aj € R}
Ul
R[t] = {aot’ + art' + ast® + -+ | a; € R and all but a finite number of the a; are 0},

where R is the real numbers and the addition and multiplication in R((¢)) and R[[¢]] are compatible
with the addition and multiplication in R.
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17.1.4 Some examples to check.

In R,
£ =.5000000...=5-10""+0-1072+0-10" 4 -,
—1=—(1-1°40-1071 +0-1072 +--.),
7 =31415926... =3-10° +1-10° 1 +4-1072 ...,
1 =1.00000....=1-10°+0-10""+0-1072 + - --
=0.999999 =9-1071 +9-10724+9-103+9-107* +--- .
In Qr,
888=6+0-7T+4-7*+1-7+0-7'+0-7°4+0-7+ -+,
1
_%:ﬁ:1+1'7+1'72+1'73+1'74+“"
—1=6-(—34)=6+6-T+6-7+6-7°+6-T"+---,
5=1+3-(-3)=4+3-7+3 -7 +3-7*+3. 7"+,
—6=147-(-1)=146-7+6-7246-7+6-T +...,
In R((t)),
1
—1_t:1+t+t2+t3+t4+--~,
1 1 1
t__ 42 43 44
=Tttt ot ot
nt—t— Ly L Ly
sint = _i —}-a _ﬁ + -
_ 43 -2 -1 2
m—t A N A S S

17.1.5 R and Q, and R((¢)) are metric spaces

Fix a number e € Ry .
If 2,y € R the distance between x and vy is

d(z,y) = e "M1/10072)  where
1\¢ 1\¢+1 1\ 0+2
valijo( £ (ae (15) +ae-1(55)  +aa () +00) =¢

if £ € Z is minimal such that a, # 0.
If z,y € Qp then the distance between x and y is

d(z,y) = e vl (W=7)  where val, (agpe + angZ‘H + a(gﬁpé‘”'2 + e ) =/

if £ € Z is minimal such that a, # 0.
If x,y € R((t)) then the distance between x and y is

d(z,y) = e valt(y—)  where Valt(agte + ault“l + ag+2t€+2 + .- ) =/

if £ € Z is minimal such that a, # 0.
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17.2 The number systems Z>y, Q> and R,
17.2.1 The nonnegative integers Z>g
The positive integers is the set
Zoo=4{L,1+1,1+1+1,14+1+1+1,...}
with addition given by concatenation so that, for example,
I+1+1)+(Q+14+141)=14+14+1+14+141+1.
The positive integers are often written as
Z-o={1,2,3,...} and Zsy=1{0,1,2,3,...}
is the set of nonnegative integers with addition determined by the addition in Z~y and the condition
if z€Zsy then O+2=2z and z+0=uz.
Define a relation on Z>( by

<y if there exists n € Z>g such that x +n =y.

17.2.2 The nonnegative rational numbers Q>

The nonnegative rational numbers is the set

Q>o:{9|a,bez>o,b¢o} with  2=S i ad=be,
= b = b d
and with addition and multiplication given by

a ¢ ad+bc a ¢ ac

242 d =.2===

b dT T bd MY 4T b

Define a relation on Q> by

<y if there exists a € Q>¢ such that x + a = y.
If x,y € Q>¢ define

d(z,y) =a where a € Q> is such that t +a =y or y +a = z.
Let E={1071,1072,1073,...} and let ¢ € E. The e-diagonal in Qs is
Be = {(z,y) € Q>0 x Q>0 | d(z,y) < €}.

Let a € Q>0 and € € E. The e-ball at a is

Ba)=(a—€c,at+e)={xe€Qs0|a—e<z<a+e}|
Let B={B(a) | c€E,a € Q>p}.
U C Qxo is an open set in Q>q if  there exists S C B such that U = Ugcs B-

N C Q>q is a neighborhood of x if ~ there exists € € Q¢ such that N D B.(x).

The topology on Q> is the collection of open sets of Q>¢.
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17.2.3 The nonnegative real numbers R>(

The nonnegative real numbers is the set of decimal expansions
Rso ={z.didads ... | 2 € Z>0,d; € {0,...,9}}
with a condition that 2.9999... = (2 + 1).0000 if z € Z>, and
zdy .o dgy1di9999 ... = z.dy .. dgy1(de +1)000. . . if z € Z>o and dj, # 9.

For example 0.9999... = 1.0000.. ..
Identify a nonnegative real number a = z.d1dads . .. with a series

a=z+ Z dk(ll—o)k which is really a notation for the sequence (z,24 81,2+ 82,...),
ke€Zxo

where ) ) s
51:d1%, 82:d111*0+d2(11*0), 83:d1%0+d2(T1()) —l—dg(%),

Thus a decimal expansion is really a series, which is really a sequence of elements of Q>¢. The sequence

if k € Z>o and n,m € Z>141)

a=(a1,as,...)=(z2+ 81,2+ s2,...) satisfies then d(ap, an) < 10-*.

In order to describe the addition and multiplication on R>q, consider
@20 ={a=(a1,a2,...) | a; € Q>¢ and (a1, a,...) is Cauchy}
where a sequence (a1, az,...) in Q¢ is Cauchy if it satisfies
if k € Z~¢ then there exists N € Z~q such that if m,n € Zsn then d(am,a,) < 107,
Define (ai,ag,...) = (b1, ba,...) if the sequences (ai,as,...) and (by,be,...) satisfy
if k € Z~( then there exists N € Zsq such that if n € Z>y then d(ay, b,) < 107k,

An equivalent way to say this is that (a1, asg,...) = (by,be,...) if ILm d(an,by) = 0.
n—oo
With these definitions, then define addition and multiplication on Q> by

(a1,a2,...) + (b1,ba,...) = (a1 + b1,a2 + ba,...) and (RgeOplusdefn)
(a1,a2,...) - (b1,ba,...) = (a1b1, agbe, .. .), (RgeOmultdefn)

and define (a1, aq,...) < (b1, b2,...)
if there exists N € Zs such that if n € Z>y then a, < by,. (RgeOorderdefn)
The point is that R>g is the same as @20: If
a=(a1,ag,...) € @20 then let z = |a1 | and di = [10¥ay, | mod 10,

where, if k € Z~o then Nj, € Z~¢ is such that if m,n € Z>p, then d(am,an,) < 10~*. This produces
a decimal expansion z.djdads ... such that the corresponding sequence is equal to a. So, a decimal
expansion is a Cauchy sequence and a Cauchy sequence is a decimal expansion.
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Regarding R>( as @ZO’ define a function ¢: Q>9 — R>¢ by
u(z) = (z,x,z,...), which is a Cauchy sequence in Q>g.
Define d: R>g X R>9 — R>g by
d(z,y) =z, wherez € Rsgissuchthatz+z=yory+z=uwx.
In terms of decimal expansions, the order relation on R is given by

<y if x is less than or equal to ¥ in lexicographic order.

Propositions [17.1] [17.2} [17.3] [17.4] and[17.5| are all consequences of the analogous statements for
Q>0, and the definitions of addition, multiplication and the order in R>( as given in (RgeOplusdefn)),
(RgeOmultdefn)), and (RgeOorderdefn).

Proposition 17.1. (R is a field without subtraction)
Let 0 = 0.0000... and 1 = 1.0000....

(a) If x,y,2 € Rxg then (x4 y)+z=x+ (y + 2).

(b) If t € Rsg then 0+x =2 and x +0 = x.

(c) Ifx,y € Ryg thenx+y=y+x.

(d) If z,y,z € R>q then (zy)z = x(yz).

(e) If x € Rsg thenl-z =z and x -1 = «x.

(f) If z € R>q and x # 0 then there exists v~ € Rsg such that -2 =1 and 271 -z = 1.

(9) If x,y € R>q then xy = yz.

(h) If x,y,z € R>q then z(y + z) = xy + xz.
Proposition 17.2. (Q>¢ inside R>g)

(a) if z,y € Qxp then v(z +y) = o(z) + t(y).

(b) If x,y € Q>¢ then t(zy) = t(z)(y).

(c) If x,y € Qx¢ then v(x) < i(y) if and only if v < y.
(d) v is injective.

Proposition 17.3. (< is a total order on R>q)
(a) If z € R>q then x < x.

(b) If x,y € R>g then x <y ory < z.

(c) Ifx,y€R>p and x <y and y < x then z = y.
(d) If z,y,z € Ryg and x <y and y < z then z < z.

Proposition 17.4. (addition multiplication and the order)
(a) If z,y,z€ Rsp and x <y thenx + 2z <y + 2.

(b) If x,y € R>q then xy € R>o.

Proposition 17.5. (d is a metric on R>g)

(a) Let x,y € Rsg. Then there exists a unique z € R>q such that z +z =1y ory + z = x.
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(b) If x € R then d(z,z) = 0.

(c) If z,y € R>g and d(x,y) =0 then x = y.

(d) If x,y € R>q then d(z,y) = d(y, x).

(e) If x,y,z € R>q then d(x,y) < d(x,z) + d(z,y).

Next are important properties of R>( which do not come so directly from analogous properties of Q.

Proposition 17.6. (The function v: Q=9 — R>q is not surjective)
(a) There exists z € Rsq such that 2? = 2.
(b) If z € R>q and 2% = 2 then z € Q.

Proposition 17.7. (Qx>¢ and the order on R>¢)
(a) If a,b € R>g and a < b then there exists ¢ € Q>o such that a < ¢ <b.
(b) If a,b € R>o and a < b then there exists ¢ € (R>o — Qx0) such that a < ¢ < b.

Theorem 17.8. (Archimedes’ property)
If x,y € R>q then there exists n € Zx¢ such that y < nz.

Theorem 17.9. (The least upper bound property)
(a) If AC R>o and A # 0 and A is bounded then sup(A) exists in R>g.

Proposition 17.10.

(a) If (a1, az,...) is an increasing and bounded sequence in R>qg then (a1, aq,...) converges to sup{ai,az,...}.

() Q>0 = Rx.

Theorem 17.11. Let n € Z~o. The function x™: R>g — R>q is continuous, bijective, and satisfies
ifr,y € Rsp and x <y then z™ <y™

. . 1 . .
Furthermore, the inverse function = : R>g — R>q is continuous.

}'=X'=}‘=X"}'=X3 y=x
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y=Xx

1

y= x}

y= x?

i y=Xx3

1
The standard uniformity on R>q is
X = {subsets of R>g x R>¢ which contain a set B}, where

Be = {(7,y) € Rog x Rxq | d(z,y) <€} foree {1071,1072,...}.
The standard topology on R> is
7 = {unions of open balls},
where the set of open balls is B = {B.(z) | e € {1071,1072,...},2 € R>o} and
B(x) ={y € R>p | d(z,y) < €} is the e-ball at x.

Proposition 17.12. (Topological properties of R>q)
(a) R>q is a Hausdorff topological space.

(b) R>p is a complete metric space.

(c) Rxq is locally compact.

(d) R>¢ is not compact.

An interval in R>¢ is a set A € R>¢ such that

ifx,y e Aand z € Ryp and < z < y then z € A.

Theorem 17.13. Let A C Rxg.
(a) A is connected if and only if A is an interval.

(b) A is compact if and only if A is closed and bounded.
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17.3 Some proofs
17.3.1 Relations between Q¢ and R>g

Proposition 17.14. (The function v: Q> — R>q is not surjective)
(a) There exists z € Rsq such that 2° = 2.
(b) If z € Rsq and 2% = 2 then z € Q.

Proof. (Sketch)

(a) Noting that 12 =1 <2 and 22 =4 > 2, let 2; = 1.

Noting that 142 = 196 < 200 and 15% = 225 > 200, let 2o = 1.4.

Noting that 1412 = 19881 < 20000 and 1422 = 20164 > 20000, let z3 = 1.41.

In general, for k£ € Z> let ay, € Z~( be maximal such that az < 2-10% and let k41 = 10~ *ay,.
Then z = (21, 29,...) € R and 22 = 2.

(b) If z = p/q € Q>¢ with p/q in reduced form then 2¢* = p? which implies 2 divides p which implies
2 divides ¢, which is a contradiction to p/q being reduced. THIS HEAVILY USES THE FACT THAT
7Z 1S A UNIQUE FACTORIZATION DOMAIN. DO YOU KNOW HOW TO PROVE THAT Z IS A
UNIQUE FACTORIZATION DOMAIN?? ]

Proposition 17.15. (Q>o and the order on R>p)
(a) If a,b € R>g and a < b then there ezists ¢ € Q>¢ such that a < ¢ <b.
(b) If a,b € R>p and a < b then there exists c € (R>9 — Q>¢) such that a < ¢ < b.

Proof.
(a) If a,b € R>p and a < b.

To show: There exists ¢ € Q¢ such that a < c <b.
Let € R>g such that b =a + .
Let k € Z~¢ such that 107% < z
(i.e. if = z.dydads . .. then let n € Z~( such that d,, # 0 and let k =n + 1).
Let c=a+ 107%.
Sincea <a+10"* <a+x =0bthen a <c<b.

(b) Since V2 e R>0 — Q>¢ then ¢ € R>g — Q>o.
Let x € R>g such that b =a + =.
Let k € Z< such that 107% <
Let c=a+ 107’“§.

Sincea<a+10_k§<a—|—10_k<a+x:bthena<c<b.

17.3.2 Archimedes’ property and the least upper bound property

Theorem 17.16. (Archimedes’ property)
If x,y € R>q then there exists n € Z>q such that y < nz.

206



MAST30026 Resources, Arun Ram, July 19, 2022

Proof. Assume z,y € Ryg.
To show: There exists n € Z~g such that y < nz.
Using Proposition |17.7(a), there exist g € Q>0 and ; € Q- such that

r
0< P <z and y < -—.
q s
Let n € Z~¢ be such that nps > gr.
Then , ns
y< LIy
sq sq

Theorem 17.17. (The least upper bound property)
(a) If ACR>gp and A # 0 and A is bounded then sup(A) exists in R>g.

Proof. (Sketch) If a = zdjdads . .. is the decimal expansion of a and k € Z~q then let
ar = z.didg -+ - di, € Q>0 (this is the kth element of the sequence corresponding to a).
For k € Z~, define
A =A{ar | a € A} so that A CQ>p and Card(A4y) < 10%.

Fro k € Z~q let Let
2, = max(Ag), and let z=(z1,%2,...).

Check that z = (21, 22,...) is a Cauchy sequence in Q>0 and then check the defining conditions for
sup(A) to complete the proof that the element of R>g given by the Cauchy sequence z = (21, 22, .. .)
is sup(A). O
17.3.3 Convergence and continuity in Rx

Proposition 17.18.

(a) If (a1, a2, ...) is an increasing and bounded sequence in R>q then (a1, aq, ...) converges to sup{a1,as,...}.

(b) Q>0 = Rxo.
Proof.

(a) Let (a1,aq,...) be a sequence in R such that a; < ay < --- and there exists b € R such that if
1 € Z~¢ then a; < b.

By the least upper bound property (Proposition [17.9), since A = {a1, a2, ...} is bounded then
sup{ai, ag, ...} exists.

Let ¢ = sup{ai,az,...}.
To show: lim a, = c.
n—oQ
To show: If € € Ry then there exists £ € Zs¢ such that if n € Z>, then |c — ap| < €.
Assume € € Ryg.
To show: There exists ¢ € Z~ such that if n € Z>, then |c — ay| < e.
Using that ¢ — € is not an upper bound, let £ € Z~( be such that ay > ¢ —e.
If ne€Zsythena, >asandsoc—a, <c—ay <e.
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So lim a, =c.
n—oo

So lim a, =sup{ay,as,...}.
n—oo
Let x = z.didsy ... € Rzo.
Let xp = z.d1ds . . . dj, be the first k decimal places of x.

Then (x1,z2,...) is a sequence in R>g such that lim zj = x.

k—o0
So Rzo - @
Since Q>¢ means closure of Q> in R> then Q>0 C Rxo.
So @ = Rzo.

O

Theorem 17.19. Let n € Z~o. The function x™: R>g — R>q is continuous, bijective, and satisfies

ifr,y € Rso and x <y then z™ <y™

. . 1 . )
Furthermore, the inverse function z= : R>g — Rx>q is continuous.

Proof. (Sketch)

To show: (a) The function x

(a)

. RZO — Rzo is monotone.

(b) The function z™: R>g — R>( is injective.

(c) The function z™: R>o — R>¢ is surjective.

(d) The function z™: R>g — R>q is continuous.

(e) The inverse function z'/": R>¢ — Rsg exists and is continuous.

Assume z,y € R>p and z < y.
Then there exists z € R>g such that z + 2z = y.
Using the binomial theorem,
n—1
< " 42" < g+ (Z <ﬁ>m”jy"> +yt=(x+2)" =y"
— \J

<

So the function 2™ : R>q — R is monotone.

Assume z,y € R>¢ and x # y.

By (a), if z < y then 2™ < 3™ and ™ # y™ and if > y then 2™ > y™ and 2" # y".

So the function z": R>¢g = R>( then the function 2": R>o — R>q is injective.

To show: The function z™: R>g — R>¢ is surjective.

To show: If z € R>¢ then there exists € R>¢ such that 2™ = z.

Assume z € Rx.

By the least upper bound property (Proposition, z =sup{y € R>¢ | y" < z} exists in R>g.
Then 2" = .

So the function 2" : R>¢ — R is surjective.

To show: If a € R>( then 2™: R>o — R is continuous at a.

Assume a € R>o.

To show: If € € E then there exists § € E such that if y € R>¢ and d(y, a) < J then d(y", a™) < e.
Assume € € E.
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To show: There exists § € E such that if d(y,a) < ¢ then d(y",a™) < e.
Let § = 2"(1%6.
Letting d = d(a,y) then

) =1y~ = (o + @ - | a5 (1))

i=1 J

< da”fl(zn: (”)) = da" (2" — 1) < §2"a" ! = .

=1
(What is at the core of this is that the distance d(y™,a™) is related to the distance d(y,a) by
d(y,a)a""'n < d(y",a") < d(y,a)a" (2" — 1).

So z": R>9 — R>( is continuous at a.

So z": R>9 — R>¢ is continuous.

To show: If b € R>( then wn R>o — R is continuous at b.
Assume b € R>o.

To show: If € € E then there exists § € E such that if z € R>g and d(z,b) < § then d(z%,b%) < e.
Assume € € E.

Let 6 = na" tem.

To show: If z € Rsq and d(z,b) < & then d(z7,bn) < e.
Assume z € R>g and d(z,b) < 0.

To show: d(z%,b%) <e.

Let a = b'/" and y = z'/". Then

d(zY™ bV = d(y, a) < naiild(y”,a") (2 ) < — i =e
Since
" n n
dy™,a™) = |y" —a"| = |(a +d)" — a"| = da"* - (Z‘I s (j)) > da" ! (1) da"'n
=

17.3.4 Topological properties of R>(

Proposition 17.20. (Topological properties of R>g)

(a) R>q is a Hausdorff topological space.

(b) R>q is a complete metric space.

(c) Rxq is locally compact.

(d) R>¢ is not compact.

Proof. (Sketch)

(a)

To show: If x,y € R>p and = # y then there exist open sets U and V such that x € U and y € V
and UNV = 0.
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Assume z,y € R>¢ and x # y.
Let € = 1d(z,y) and let

U= R(xfe,ere) and V= R(yfe,y+e)'

Thenz=z+0€Uandy=y+0€V and UNV = 0.
So R> is a Hausdorff topological space.
To show: If (z1,x2,...) is a Cauchy sequence in R>q then (z1,2,...) converges in Rx>.

To show: If (z1,x2,...) is a Cauchy sequence in R>q then there exists y € R>( such that

= lim z,.
n— oo

Let (z1,22,...) be a Cauchy sequence in R>.

xr1 = Zl.dudlgdlg ey
o = 22.d21d22d23 ceey
T3 = 23.d31d32d33 . . .,

To show: There exists y € R>q such that y = lim x,,.
- n— oo

For k € Z>¢ let ¢}, be such that if m,n € Zs,, then d(zy,, z,) < 107%.
Let y = z.dydads - - -, where

Z = Zyy, dl = dllla d2 = d€227

To show: If k € Z>( then there exists N € Zq such that if m € Zsx then d(zp,y) < 107F.
Assume k € Z~y.
Let N = l41.
To show: If m € Zxy,,, then d(zy,y) < 1075
Assume m € Zxy, , ;-
Then
AT, y) < d(@m, 2a,,,) + d(w,,,,y) < 107FFD 4 107EHD < 107k,

So lim zp = y.
k€oo
So Cauchy sequences in R>( converge.

So Rx>¢ is complete.

This proof is conceptual and easy but there is a little bit of fuzziness in this proof caused by the
fact that the decimal expansion of an element of R>¢ is not uniquely determined, for example
0.999... = 1.000.... To remove this fuzziness use equivalence classes of Cauchy sequences in
@ZO as in the proof that the completion of a metric space is complete.

To show: R>q is locally compact.
To show: (ca) R> is Hausdorff.

(cb) If 2 € R>( then there exists a neighborhood N of z such that N is cover compact.
(ca) By part (b), R>( is Hausdorff.

(cb) To show: If x € R>q then there exists a neighborhood N of x such that N is cover compact.
Assume z € Rxo.
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Let N =Bi(z) ={y € R>o | [y —z| < 1}.

Since N 2 Bj(z) and = € Bj(x) then N is a neighborhood of z.
Since N C Bs(x) then N is bounded.

Since N is closed and bounded then IV is cover compact.

So R is locally compact.
(d) The sequence (1,2,3,4,...) is a sequence in R>¢ that does not have a cluster point.

So R is not compact.

An interval in R>g is a set A C R>¢ such that
ifx,y e Aand z € Ry>g and x < z < y then z € A.

Theorem 17.21. Let A C Rxg.
(a) A is connected if and only if A is an interval.

(b) A is compact if and only if A is closed and bounded.
Proof.

(a) =: Assume E is not an interval.
Let x,y € F and z € E° with 2z <z <y.
Let A= (—00,2)NE and B = (z,00) N E.
Then A and B are open sets of J and, since x € A and y € B then

A#0, B#0, ANnB=0, and AUB=E.

So F is not connected.
(a) <: Assume E is an interval.
To show: E is connected.
Let A C FE and B C E be open subsets of E such that

A#0, B#0 and AUB=E.

To show: AN B # (.

There exists z € AN B.

Let z1,y1 € J with 1 € A and y; € B.

Switching A and B if necessary assume that z1 < y;.

Construct sequences x1, To, ... and y1,¥2,... by
v =22 and g =y it DYy,
2 2
Tirl = T and Yivl = : 5 yl, if ZTyZ € B.

PUT A PICTURE HERE
By induction, z; € F and y; € F, and since F is an interval, %(mz +y;) € E so that

Tiy1 € FE and Yiy1 € E.
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Also
Tiv1 €A, Y1 € B, i < i1 < Yir1 < Yis

and

1
|Ziv1 — yira| < 3lai —wil,  sothat  |wiq —yi] < iler —wl.

Theorem [17.10(a) says that increasing bounded sequences converge, and since the sequence

T1,T2,... is increasing and bounded by y;
then lim =z, exists in R.
n— oo

Theorem [17.10[a) says that decreasing bounded sequences converge, and since the sequence
Y1,Y2, - .. is decreasing and bounded by x;
then lim y, exists in R.

n—o0
Since lim |z, —y,| =0 then lim z, = lim y,.

n—oo n—oo n—oo
Let

z= lim z, = lim y,.
n—oo n—o0

Since 1 < xo < - <y < Yp <Y1 < -+ <y for n € Z~g then
T < z<UYj.

Since F is an interval, z € F.
By the characterization of closure in metric spaces via limits (Theorem |13.6)),
z= lim z, € A and z= lim y, € B.
n—oo n—oo
Since A=A and B = B then z € AN B.
So AN B # .
So FE is connected.
(b) By Theorem F is compact if E is Cauchy compact and bounded, so
To show: (ba) If E C R is bounded then E is ball compact.
(bb) If E C R is closed then F is Cauchy compact.

(ba) Assume E C R is bounded.
To show: E is ball compact.
Since E is bounded there exists € R and M € Ry such that £ C (x — M,z + M).
To show: If € € Ry then there exists ¢ € Z~¢ and z1,29,...,2, € R such that £ C
B€($1) U BG(LL'@).
Assume € € Ryp.
To show: There exists £ € Zsg and x1, 2, ...,2¢ € R such that £ C Bc(x1) U - - Be(zy).
Let £ € Z~q such that £-§ > 2M. Let

ri=x—-M, z2=m+35, w3=2T2+35,...,00=11+{5.
Then

EC(x—M,z+ M)

C
g(1‘1f%,371+§)U($27%,x2+§)U"~($gf§,xf+§).

DRAWAPICTURE
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So E is ball compact.
(bb) Assume F is closed.
To show: FE is Cauchy compact.
To show: F is complete.
To show: If (a1, as,...) is a Cauchy sequence in E then (ay,as,...) converges in E.
Assume (aq,ag,...) is a Cauchy sequence in E.
Then (a1, as,...) is a Cauchy sequence in R.
Since R is complete then lim,, . a, exists in R.
To show: lim,,_yo @, is an element of E.
Since E' is closed,

E =F = {z € R | there exists a sequence (a1,as,...) in E with z = lim a,}.
n—oo

So lim,,ye0 apn € E = E.
So (a1, as,...) converges in E.
So E is complete.

So F is ball compact and Cauchy compact in the metric space R.

So F is compact.

17.3.5 Notes and References

AN IMPORTANT QUESTION IS HOW TO COMPUTE EXPLICITLY THE DECIMAL EXPAN-
SIONS OF a + b, ab and a~!. NOTE THAT multiplication is not uniformly continuous. ALSO WE
NEED TO VERIFY THAT THESE OPERATIONS ARE WELL DEFINED.

To construct z—! compute 1 divided by z by long division. Alternatively, multiply = by 10~ to
get a number y less than 1 and let z be such that y + z = 1. Then

1 1
x  10ky y 1—=z

=107 F14+2+224...).
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