MAST30026 Metric and Hilbert Spaces Sample exam 4

Question 1. (16 Marks)

- (a) Define closure.
- (b) Carefully state the theorem relating closure and limits of sequences.
- (c) Carefully prove the theorem relating closure and limits of sequences.

Question 2. (20 Marks)

- (a) Carefully define normed vector space.
- (b) Carefully define B(V, W).
- (c) Prove that B(V, W) is a normed vector space.

Question 3. (24 Marks)

- (a) Define limit point and cluster point of a sequence in a metric space.
- (b) Define Cauchy sequence and convergent sequence.
- (c) Carefully state and prove a proposition to the effect that every limit point is a cluster point.
- (d) Carefully state and prove a proposition to the effect that every convergent sequence is Cauchy.

Question 4. (18 Marks)

- (a) Define topological space and continuous function.
- (b) Define uniform space and uniformly continuous function.
- (c) Prove that uniformly continuous functions are continuous.

Question 5. (20 Marks)

- (a) Define topologically equivalent metric spaces.
- (b) Define the standard metric d on \mathbb{R}^2 .
- (c) Let $d_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be the metric on \mathbb{R}^2 given by

 $d_2((x_1, x_2), (y_1, y_2)) = |y_1 - x_1| + |y_2 - x_1|.$

Prove that (\mathbb{R}, d) and (\mathbb{R}, d_2) are topologically equivalent.

Question 6. (12 Marks)

(a) Carefully state the Spectral Theorem.

(b) Give thorough examples illustrating the spectral theorem – if you were giving a lecture teaching/explaining the Spectral Theorem, what examples would you include and what points would you make about them?

Question 7. (26 Marks) Let (X, d_X) and (Y, d_Y) be metric spaces. Let

$$F = \{ \text{functions } f \colon X \to Y \}, \quad (f_1, f_2, \dots) \text{ a sequence in } F$$

and let $f: X \to Y$ be a function.

- (a) Show that if $(f_1, f_2, ...)$ converges uniformly to f then $(f_1, f_2, ...)$ converges pointwise to f.
- (b) Let $X = Y = \mathbb{R}_{[0,1]} = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ with metric given by $d_X(a,b) = d_Y(a,b) = |a-b|$. For $n \in \mathbb{Z}_{>0}$ let

$$\begin{array}{cccc} f_n \colon & \mathbb{R}_{[0,1]} & \to & \mathbb{R}_{[0,1]} \\ & x & \mapsto & x^n \end{array} \quad \text{ and let } f \colon \mathbb{R}_{[0,1]} \to \mathbb{R}_{[0,1]} \end{array}$$

be given by

$$f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x = 1. \end{cases}$$

Carefully graph f_1, f_2, f_3, f_4 and f. Show that (f_1, f_2, \ldots) converges pointwise to f but does not converge uniformly to f.

Question 8. (24 Marks) Let $(a_1, a_2, ...)$ be a bounded sequence of complex numbers. Define an operator

$$T: \ell^2 \to \ell^2$$
 by $T(b_1, b_2, \dots) = (0, a_1 b_1, a_2 b_2, \dots)$

- (a) Show that T is a bounded linear operator and find ||T||.
- (b) Compute the adjoint operator T^* .
- (c) Show that if $T \neq 0$ then $T^*T \neq TT^*$.
- (d) Find the eigenvalues of T^* .