MAST30026 Metric and Hilbert Spaces Sample exam 1

Question 1. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)=\frac{1}{10}(8 x+8 y, x+y)
$$

Recall metrics

$$
\begin{aligned}
d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| \\
d_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\left(\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}\right)^{1 / 2} \\
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}
\end{aligned}
$$

If f a contraction with respect to $d_{1} ? d_{2} ? d_{\infty}$? Prove that your answers are correct.
Question 2. A family $\left\{F_{i}\right\}_{i \in I}$ is said to have the finite intersection property if for every finite subset J of $I, \bigcap_{i \in J} F_{i}=\emptyset$. Show that X is compact if and only if for every family $\left\{F_{i}\right\}_{i \in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i \in I} F_{i} \neq \emptyset$.
Question 3. Let X be a connected topological space. Let $f: X \rightarrow \mathbb{R}$ be continuous with $f(X) \subseteq \mathbb{Q}$. Show that f is a constant function.
Question 4. Let $\left[a_{i j}\right]$ be a infinite complex matrix, $i, j=1,2, \ldots$, such that if $j \in \mathbb{Z}_{>0}$ then

$$
c_{j}=\sum_{i}\left|a_{i j}\right| \quad \text { converges, } \quad \text { and } \quad c=\sup \left\{c_{1}, c_{2}, \ldots\right\}<\infty
$$

Show that the operator $T: \ell^{1} \rightarrow \ell^{1}$ defined by

$$
T\left(b_{1}, b_{2}, \ldots\right)=\left(\sum_{j} a_{1} j b_{j}, \sum_{j} a_{2 j} b_{j}, \ldots\right)
$$

is a bounded linear operator and that $\|T\|=c$.
Question 5. Let (X, d) be a metric space. Show that the metric $d^{\prime}: X \times X \rightarrow \mathbb{R}$ given by

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

is equivalent to d.

Question 6. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and let $\left\{f_{n}\right\}$ be a sequence of functions $f_{n}: X \rightarrow Y$.
(a) Define what it means for the sequence $\left\{f_{n}\right\}$ to converge uniformly to a function $f: X \rightarrow Y$.
(b) Prove that if each f_{n} is bounded and $\left\{f_{n}\right\}$ converges uniformly to f, then f is also bounded.
(Recall: a function $f: X \rightarrow Y$ is bounded if there is a constant $M \in \mathbb{R}_{\geq 0}$ such that if $x, x^{\prime} \in X$ then $\left.d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq M.\right)$
(c) Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ for each $n \in \mathbb{Z}_{>0}$ by

$$
f_{n}(x)=\frac{n x^{2}}{1+n x} \text { for } x \in[0,1] .
$$

Find the pointwise limit f of the sequence $\left\{f_{n}\right\}$, and determine whether the sequence converges uniformly to f.

Question 7. Let $p \in \mathbb{R}_{>1}$. Let $e_{i}=(0,0, \ldots, 0,1,0,0, \ldots)$ with 1 in the i th entry. Show that $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is a Schauder basis of ℓ^{p}.

Question 8. Let $X=[0,2 \pi)$ and $Y=S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Let $f:[0,2 \pi) \rightarrow S^{1}$ be given by

$$
f(x)=(\cos x, \sin x) .
$$

(a) Show that f is continuous.
(b) Show that f is a bijection.
(c) Show that $f^{-1}: S^{1} \rightarrow[0,2 \pi)$ is not continuous.
(d) Why does this not contradict the following statement: Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Assume f is a bijection, X is compact and Y is Hausdorff. Then the inverse function $f^{-1}: Y \rightarrow X$ is continuous.

