MAST30026 Metric and Hilbert Spaces Sample exam 1

Question 1. Consider the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = \frac{1}{10}(8x + 8y, x + y)$$

Recall metrics

$$d_1((x_1, y_1), (x_2, y_2) = |x_1 - x_2| + |y_1 - y_2|, d_2((x_1, y_1), (x_2, y_2) = (|x_1 - x_2|^2 + |y_1 - y_2|^2)^{1/2}, d_{\infty}((x_1, y_1), (x_2, y_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

If f a contraction with respect to d_1 ? d_2 ? d_∞ ? Prove that your answers are correct.

Question 2. A family $\{F_i\}_{i\in I}$ is said to have the finite intersection property if for every finite subset J of I, $\bigcap_{i\in J} F_i = \emptyset$. Show that X is compact if and only if for every family $\{F_i\}_{i\in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i\in I} F_i \neq \emptyset$.

Question 3. Let X be a connected topological space. Let $f: X \to \mathbb{R}$ be continuous with $f(X) \subseteq \mathbb{Q}$. Show that f is a constant function.

Question 4. Let $[a_{ij}]$ be a infinite complex matrix, i, j = 1, 2, ..., such that if $j \in \mathbb{Z}_{>0}$ then

$$c_j = \sum_i |a_{ij}|$$
 converges, and $c = \sup\{c_1, c_2, \ldots\} < \infty$.

Show that the operator $T: \ell^1 \to \ell^1$ defined by

$$T(b_1, b_2, \ldots) = \left(\sum_j a_1 j b_j, \sum_j a_{2j} b_j, \ldots\right)$$

is a bounded linear operator and that ||T|| = c.

Question 5. Let (X, d) be a metric space. Show that the metric $d' \colon X \times X \to \mathbb{R}$ given by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is equivalent to d.

Question 6. Let (X, d_X) and (Y, d_Y) be metric spaces, and let $\{f_n\}$ be a sequence of functions $f_n : X \to Y$.

- (a) Define what it means for the sequence $\{f_n\}$ to converge uniformly to a function $f: X \to Y$.
- (b) Prove that if each f_n is bounded and $\{f_n\}$ converges uniformly to f, then f is also bounded. (Recall: a function $f: X \to Y$ is *bounded* if there is a constant $M \in \mathbb{R}_{\geq 0}$ such that if $x, x' \in X$ then $d_Y(f(x), f(x')) \leq M$.)

(c) Define $f_n: [0,1] \to \mathbb{R}$ for each $n \in \mathbb{Z}_{>0}$ by

$$f_n(x) = \frac{nx^2}{1+nx}$$
 for $x \in [0,1]$.

Find the pointwise limit f of the sequence $\{f_n\}$, and determine whether the sequence converges uniformly to f.

Question 7. Let $p \in \mathbb{R}_{>1}$. Let $e_i = (0, 0, \dots, 0, 1, 0, 0, \dots)$ with 1 in the *i*th entry. Show that $\{e_1, e_2, e_3, \dots\}$ is a Schauder basis of ℓ^p .

Question 8. Let $X = [0, 2\pi)$ and $Y = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let $f: [0, 2\pi) \to S^1$ be given by

$$f(x) = (\cos x, \sin x).$$

- (a) Show that f is continuous.
- (b) Show that f is a bijection.
- (c) Show that $f^{-1}: S^1 \to [0, 2\pi)$ is not continuous.
- (d) Why does this not contradict the following statement: Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Assume f is a bijection, X is compact and Y is Hausdorff. Then the inverse function $f^{-1}: Y \to X$ is continuous.