12 Sets, functions and relations

12.1 Sets and functions

12.1.1 Sets

A set is a collection of objects which are called *elements*. Write

 $s \in S$ if s is an element of the set S.

- The *empty set* \emptyset is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$.

Write

 $T \subseteq S$ if T is a subset of S, and T = S if the set T is equal to the set S.

Let S and T be sets.

• The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$,

$$S \cup T = \{ u \mid u \in S \text{ or } u \in T \}.$$

• The intersection of S and T is the set $S \cup T$ of all u such that $u \in S$ and $u \in T$,

$$S \cap T = \{ u \mid u \in S \text{ and } u \in T \}.$$

• The product S and T is the set $S \times T$ of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$S \times T = \{(s,t) \mid s \in S \text{ and } t \in T\}.$$

The sets S and T are disjoint if $S \cap T = \emptyset$. The set S is a proper subset of T if $S \subseteq T$ and $S \neq T$.

12.1.2 Functions

Functions are for comparing sets.

Let S and T be sets. A function from S to T is a subset $\Gamma_f \subseteq S \times T$ such that

if
$$s \in S$$
 then there exists a unique $t \in T$ such that $(s, t) \in \Gamma_f$

Write

$$\Gamma_f = \{(s, f(s)) \mid s \in S\}$$

so that the function Γ_f can be expressed as

an "assignment"
$$f: S \to T$$

 $s \mapsto f(s)$

which must satisfy

(a) If $s \in S$ then $f(s) \in T$, and

(b) If $s_1, s_2 \in S$ and $s_1 = s_2$ then $f(s_1) = f(s_2)$.

Let S and T be sets.

• Two functions $f: S \to T$ and $g: S \to T$ are equal if they satisfy

if $s \in S$ then f(s) = g(s).

• A function $f: S \to T$ is *injective* if f satisfies the condition

if $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

• A function $f: S \to T$ is surjective if f satisfies the condition

if $t \in T$ then there exists $s \in S$ such that f(s) = t.

• A function $f: S \to T$ is *bijective* if f is both injective and surjective.

12.1.3 Composition of functions

Let $f: S \to T$ and $g: T \to U$ be functions. The *composition* of f and g is the function

$$g \circ f$$
 given by $g \circ f \colon S \to U$
 $s \mapsto g(f(s))$

Let S be a set. The *identity map on* S is the function given by

Let $f: S \to T$ be a function. The *inverse function to* f is a function

$$f^{-1}: T \to S$$
 such that $f \circ f^{-1} = \operatorname{id}_T$ and $f^{-1} \circ f = \operatorname{id}_S$.

Theorem 12.1. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Let S and T be sets. The sets S and T are isomorphic, or have the same cardinality

if there is a bijective function $\varphi: S \to T$.

Write Card(S) = Card(T) if S and T have the same cardinality. Notation: Let S be a set. Write

$$\operatorname{Card}(S) = \begin{cases} 0, & \text{if } S = \emptyset, \\ n, & \text{if } \operatorname{Card}(S) = \operatorname{Card}(\{1, 2, \dots, n\}), \\ \infty, & \text{otherwise.} \end{cases}$$

Note that even in the cases where $\operatorname{Card}(S) = \infty$ and $\operatorname{Card}(T) = \infty$ it may be that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$. Let S be a set.

- The set S is finite if $Card(S) \neq \infty$.
- The set S is *infinite* if Card(S) is not finite.

- The set S is countable if $Card(S) = Card(\mathbb{Z}_{>0})$.
- The set S is *countably infinite* if S is countable and infinite.
- The set S is *uncountable* if S is not countable.

Let Set be the set of sets. Define a relation \sim on Set by

 $X \sim Y$ if there exists a bijection $f: X \to Y$.

The relation \sim is an equivalence relation and $\operatorname{Card}(X)$ is the equivalence class of X. The set of *ordinals* is the set of equivalence classes of \sim ,

$$\mathcal{O}rd = \{ \operatorname{Card}(X) \mid X \in \mathcal{S}et \}.$$

Theorem 12.2. Define a relation \leq on Set by

 $X \preceq Y$ if there exists an injection $f: X \to Y$.

(a) The relation \leq on Set gives a well defined relation \leq on $\mathcal{O}rd$,

 $\operatorname{Card}(X) \leq \operatorname{Card}(Y)$ if there exists an injection $f: X \to Y$,

where $X \in Card(X)$ and $Y \in Card(Y)$.

(b) The relation \leq is a partial order on $\mathcal{O}rd$.

12.2 Relations, equivalence relations and partitions

Let S be a set.

• A relation ~ on S is a subset R_{\sim} of $S \times S$. Write $s_1 \sim s_2$ if the pair (s_1, s_2) is in the subset R_{\sim} so that

$$R_{\sim} = \{ (s_1, s_2) \in S \times S \mid s_1 \sim s_2 \}.$$

- An equivalence relation on S is a relation \sim on S such that
 - (a) if $s \in S$ then $s \sim s$,
 - (b) if $s_1, s_2 \in S$ and $s_1 \sim s_2$ then $s_2 \sim s_1$,
 - (c) if $s_1, s_2, s_3 \in S$ and $s_1 \sim s_2$ and $s_2 \sim s_3$ then $s_1 \sim s_3$.

Let \sim be an equivalence relation on a set S and let $s \in S$. The equivalence class of s is the set

 $[s] = \{t \in S \mid t \sim s\}.$

A partition of a set S is a collection \mathcal{P} of subsets of S such that

- (a) If $s \in S$ then there exists $P \in \mathcal{P}$ such that $s \in P$, and
- (b) If $P_1, P_2 \in \mathcal{P}$ and $P_1 \cap P_2 \neq \emptyset$ then $P_1 = P_2$.

Theorem 12.3.

(a) If S is a set and let \sim be an equivalence relation on S then

the set of equivalence classes of \sim is a partition of S.

(b) If S is a set and \mathcal{P} is a partition of S then

the relation defined by $s \sim t$ if s and t are in the same $P \in \mathcal{P}$

is an equivalence relation on S.

12.3Some proofs

12.3.1An inverse function to f exists if and only if f is bijective

Theorem 12.4. Let $f: S \to T$ be a function. The inverse function to f exists if and only if f is bijective.

Proof.

- \Rightarrow : Assume $f: S \to T$ has an inverse function $f^{-1}: T \to S$. To show: (a) f is injective.
 - (b) f is surjective.
 - (a) Assume $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$. To show: $s_1 = s_2$. $s_1 = f^{-1}f(s_1) = f^{-1}f(s_2) = s_2.$

So f is injective.

(b) Let $t \in T$. To show: There exists $s \in S$ such that f(s) = t. Let $s = f^{-1}(t)$. Then

$$f(s) = f(f^{-1}(t)) = t.$$

So f is surjective.

So f is bijective.

 \Leftarrow : Assume $f: S \to T$ is bijective.

To show: f has an inverse function.

- We need to define a function $\varphi \colon T \to S$.
- Let $t \in T$.

Since f is surjective there exists $s \in S$ such that f(s) = t.

Define $\varphi(t) = s$.

To show: (a) φ is well defined.

(b) φ is an inverse function to f.

- (a) To show: (aa) If $t \in T$ then $\varphi(t) \in S$. (ab) If $t_1, t_2 \in T$ and $t_1 = t_2$ then $\varphi(t_1) = \varphi(t_2)$.
 - (aa) This follows from the definition of φ . (ab) Assume $t_1, t_2 \in T$ and $t_1 = t_2$. Let $s_1, s_2 \in S$ such that $f(s_1) = t_1$ and $f(s_2) = t_2$. Since $t_1 = t_2$ then $f(s_1) = f(s_2)$. Since f is injective this implies that $s_1 = s_2$. So $\varphi(t_1) = s_1 = s_2 = \varphi(t_2)$. So φ is well defined.

(b) To show: (ba) If $s \in S$ then $\varphi(f(s)) = s$. (bb) If $t \in T$ then $f(\varphi(t)) = t$.

(ba) This follows from the definition of φ .

(bb) Assume $t \in T$. Let $s \in S$ be such that f(s) = t. Then

$$f(\varphi(t)) = f(s) = t.$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T, respectively.

So φ is an inverse function to f.

12.3.2 An equivalence relation on S and a partition of S are the same data Theorem 12.5.

(a) If S is a set and let \sim be an equivalence relation on S then

the set of equivalence classes of \sim is a partition of S.

(b) If S is a set and \mathcal{P} is a partition of S then

the relation defined by $s \sim t$ if s and t are in the same $P \in \mathcal{P}$

is an equivalence relation on S.

Proof.

(a) To show: (aa) If $s \in S$ then s is in some equivalence class. (ab) If $[s] \cap [t] \neq \emptyset$ then [s] = [t].

(aa) Let
$$s \in S$$
.
Since $s \sim s$ then $s \in [s]$.
(ab) Assume $[s] \cap [t] \neq \emptyset$.
To show: $[s] = [t]$.
Since $[s] \cap [t] \neq \emptyset$ then there is an $r \in [s] \cap [t]$.
So $s \sim r$ and $r \sim t$.
By transitivity, $s \sim t$.
To show: (aba) $[s] \subseteq [t]$.
(abb) $[t] \subseteq [s]$.
(aba) Assume $u \in [s]$.
Then $u \sim s$.
We know $s \sim t$.
So, by transitivity, $u \sim t$.
Therefore $u \in [t]$.
So $[s] \subseteq [t]$.
(aba) Assume $v \in [t]$.
Then $v \sim t$.
We know $t \sim s$.
So, by transitivity, $v \sim s$.
Therefore $v \in [s]$.
So $[t] \subseteq [s]$.
So $[s] = [t]$.

So the equivalence classes partition S.

- (b) To show: \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric and transitive. To show: (ba) If $s \in S$ then $s \sim s$.
 - (bb) If $s \sim t$ then $t \sim s$.
 - (bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
 - (ba) Since s and s are in the same S_{α} then $s \sim s$.
 - (bb) Assume $s \sim t$.

Then s and t are in the same S_{α} .

So $t \sim s$.

(bb) Assume $s \sim t$ and $t \sim u$.

Then s and t are in the same S_{α} and t and u are in the same S_{α} .

So $s \sim u$.

So \sim is an equivalence relation.

12.4 Notes and references

Almost everything in mathematics is built from sets and functions. Groups, rings, fields, vector spaces ... are all sets endowed with additional functions which have special properties. In the society of mathematics, sets and functions are the individuals and the fascination is the way that the individuals, each one different from the others, interact.

Functions are the morphisms in the category Set of sets and products are products in the category Set of all sets. The set of sets Set may or may not make sense to you: there are good reasons – study Russell's paradox, the Zermelo-Frenkel axioms and small categories to learn more.