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42 Tutorial 9: Properties of the real numbers

Learn to prove the following theorems, accurately, e�ciently, using quality proof machine, without
having to refer to notes. Learn to prove the following theorems, accurately, e�ciently, using quality
proof machine, without having to refer to notes. The first step of this process is to work through each
and put the reason why each line appears where it appears. The possible reasons are:

(a) (Proof type II) Assume the ifs

(b) (Proof type II) To show the thens

(c) (Rewriting) This is the definition of .

(d) (Proof type III) To show something exists, construct it.

(e) (Proof type III) To show the construction is valid.

(f) (Proof type I) Compute the left hand side.

(g) (Proof type I) Compute the right hand side.

Practice each proof so that you can do it e�ciently without referring to notes.

42.1 Relations between Q�0 and R�0

Proposition 42.1. (The function ◆ : Q�0 ! R�0 is not surjective)

(a) There exists z 2 R�0 such that z2 = 2.

(b) If z 2 R�0 and z
2 = 2 then z 62 Q�0.

Proof. (Sketch)

(a) Noting that 12 = 1 < 2 and 22 = 4 > 2, let z1 = 1.
Noting that 142 = 196 < 200 and 152 = 225 > 200, let z2 = 1.4.
Noting that 1412 = 19881 < 20000 and 1422 = 20164 > 20000, let z3 = 1.41.
In general, for k 2 Z�0 let ak 2 Z>0 be maximal such that a2

k
< 2 · 102k and let zk+1 = 10�k

ak.
Then z = (z1, z2, . . .) 2 R�0 and z

2 = 2.

(b) If z = p/q 2 Q�0 with p/q in reduced form then 2q2 = p
2 which implies 2 divides p which implies

2 divides q, which is a contradiction to p/q being reduced. THIS HEAVILY USES THE FACT THAT
Z IS A UNIQUE FACTORIZATION DOMAIN. DO YOU KNOW HOW TO PROVE THAT Z IS A
UNIQUE FACTORIZATION DOMAIN??

Proposition 42.2. (Q�0 and the order on R�0)

(a) If a, b 2 R�0 and a < b then there exists c 2 Q�0 such that a < c < b.

(b) If a, b 2 R�0 and a < b then there exists c 2 (R�0 �Q�0) such that a < c < b.

Proof.

(a) If a, b 2 R�0 and a < b.

To show: There exists c 2 Q�0 such that a < c < b.

Let x 2 R�0 such that b = a+ x.

Let k 2 Z>0 such that 10�k
< x

(i.e. if x = z.d1d2d3 . . . then let n 2 Z>0 such that dn 6= 0 and let k = n+ 1).

Let c = a+ 10�k.

Since a < a+ 10�k
< a+ x = b then a < c < b.
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(b) Since
p
2 2 R�0 �Q�0 then c 2 R�0 �Q�0.

Let x 2 R�0 such that b = a+ x.

Let k 2 Z>0 such that 10�k
< x

Let c = a+ 10�k

p
2
2 .

Since a < a+ 10�k

p
2
2 < a+ 10�k

< a+ x = b then a < c < b.

42.2 Archimedes’ property and the least upper bound property

Theorem 42.3. (Archimedes’ property)
If x, y 2 R�0 then there exists n 2 Z�0 such that y < nx.

Proof. Assume x, y 2 R>0.
To show: There exists n 2 Z>0 such that y < nx.
Using Proposition 17.7(a), there exist p

q
2 Q>0 and r

s
2 Q>0 such that

0 <
p

q
< x and y <

r

s
.

Let n 2 Z>0 be such that nps > qr.
Then

y <
rq

sq
<

nsp

sq
= nx.

Theorem 42.4. (The least upper bound property)

(a) If A ✓ R�0 and A 6= ; and A is bounded then sup(A) exists in R�0.

Proof. (Sketch) If a = zd1d2d3 . . . is the decimal expansion of a and k 2 Z>0 then let

ak = z.d1d2 · · · dk 2 Q�0 (this is the kth element of the sequence corresponding to a).

For k 2 Z>0, define

Ak = {ak | a 2 A} so that Ak ✓ Q�0 and Card(Ak)  10k.

Fro k 2 Z>0 let Let
zk = max(Ak), and let z = (z1, z2, . . .).

Check that z = (z1, z2, . . .) is a Cauchy sequence in Q�0 and then check the defining conditions for
sup(A) to complete the proof that the element of R�0 given by the Cauchy sequence z = (z1, z2, . . .)
is sup(A).

42.3 Convergence and continuity in R�0

Proposition 42.5.

(a) If (a1, a2, . . .) is an increasing and bounded sequence in R�0 then (a1, a2, . . .) converges to sup{a1, a2, . . .}.

(b) Q�0 = R�0.

Proof.
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(a) Let (a1, a2, . . .) be a sequence in R such that a1  a2  · · · and there exists b 2 R such that if
i 2 Z>0 then ai < b.

By the least upper bound property (Proposition 17.9), since A = {a1, a2, . . .} is bounded then
sup{a1, a2, . . .} exists.

Let c = sup{a1, a2, . . .}.

To show: lim
n!1

an = c.

To show: If ✏ 2 R>0 then there exists ` 2 Z>0 such that if n 2 Z�` then |c� an| < ✏.

Assume ✏ 2 R>0.

To show: There exists ` 2 Z>0 such that if n 2 Z�` then |c� an| < ✏.

Using that c� ✏ is not an upper bound, let ` 2 Z>0 be such that a` > c� ✏.

If n 2 Z�` then an � a` and so c� an  c� a` < ✏.

So lim
n!1

an = c.

So lim
n!1

an = sup{a1, a2, . . .}.

(b) Let x = z.d1d2 . . . 2 R�0.

Let xk = z.d1d2 . . . dk be the first k decimal places of x.

Then (x1, x2, . . .) is a sequence in R�0 such that lim
k!1

xk = x.

So R�0 ✓ Q�0.

Since Q�0 means closure of Q�0 in R�0 then Q�0 ✓ R�0.

So Q�0 = R�0.

Theorem 42.6. Let n 2 Z>0. The function x
n : R�0 ! R�0 is continuous, bijective, and satisfies

if x, y 2 R�0 and x < y then x
n
< y

n.

Furthermore, the inverse function x
1
n : R�0 ! R�0 is continuous.

Proof. (Sketch)
To show: (a) The function x

n : R�0 ! R�0 is monotone.
(b) The function x

n : R�0 ! R�0 is injective.
(c) The function x

n : R�0 ! R�0 is surjective.
(d) The function x

n : R�0 ! R�0 is continuous.
(e) The inverse function x

1/n : R�0 ! R�0 exists and is continuous.

(a) Assume x, y 2 R�0 and x < y.

Then there exists z 2 R�0 such that x+ z = y.

Using the binomial theorem,

x
n
< x

n + z
n
< x

n +
⇣ n�1X

j=1

✓
n

j

◆
x
n�j

y
j

⌘
+ y

n = (x+ z)n = y
n
.

So the function x
n : R�0 ! R�0 is monotone.

(b) Assume x, y 2 R�0 and x 6= y.

By (a), if x < y then x
n
< y

n and x
n
6= y

n and if x > y then x
n
> y

n and x
n
6= y

n.
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So the function x
n : R�0 ! R�0 then the function x

n : R�0 ! R�0 is injective.

(c) To show: The function x
n : R�0 ! R�0 is surjective.

To show: If z 2 R�0 then there exists x 2 R�0 such that xn = z.

Assume z 2 R�0.

By the least upper bound property (Proposition 17.9), z = sup{y 2 R�0 | y
n
< x} exists in R�0.

Then z
n = x.

So the function x
n : R�0 ! R�0 is surjective.

(d) To show: If a 2 R�0 then x
n : R�0 ! R�0 is continuous at a.

Assume a 2 R�0.

To show: If ✏ 2 E then there exists � 2 E such that if y 2 R�0 and d(y, a) < � then d(yn, an) < ✏.

Assume ✏ 2 E.
To show: There exists � 2 E such that if d(y, a) < � then d(yn, an) < ✏.

Let � = 1
2nan�1 ✏.

Letting d = d(a, y) then

d(yn, an) = |y
n
� a

n
| = |(a+ d)n � a

n
| = da

n�1
·

⇣ nX

j=1

d
j�1

aj�1

✓
n

j

◆⌘

< da
n�1

⇣ nX

j=1

✓
n

j

◆⌘
= da

n�1(2n � 1) < �2nan�1 = ✏.

(What is at the core of this is that the distance d(yn, an) is related to the distance d(y, a) by

d(y, a)an�1
n < d(yn, an) < d(y, a)an�1(2n � 1).

So x
n : R�0 ! R�0 is continuous at a.

So x
n : R�0 ! R�0 is continuous.

(e) To show: If b 2 R�0 then x
1
n : R�0 ! R�0 is continuous at b.

Assume b 2 R�0.

To show: If ✏ 2 E then there exists � 2 E such that if z 2 R�0 and d(z, b) < � then d(z
1
n , b

1
n ) < ✏.

Assume ✏ 2 E.
Let � = na

n�1
✏
n.

To show: If z 2 R�0 and d(z, b) < � then d(z
1
n , b

1
n ) < ✏.

Assume z 2 R�0 and d(z, b) < �.

To show: d(z
1
n , b

1
n ) < ✏.

Let a = b
1/n and y = z

1/n. Then

d(z1/n, b1/n) = d(y, a) <
1

nan�1
d(yn, an) =

1

nan�1
d(z, b) <

1

nan�1
� = ✏.

Since

d(yn, an) = |y
n
� a

n
| = |(a+ d)n � a

n
| = da

n�1
·

⇣ nX

j=1

d
j�1

aj�1

✓
n

j

◆⌘
> da

n�1

✓
n

1

◆
= da

n�1
n.
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42.4 Topological properties of R�0

Proposition 42.7. (Topological properties of R�0)

(a) R�0 is a Hausdor↵ topological space.

(b) R�0 is a complete metric space.

(c) R�0 is locally compact.

(d) R�0 is not compact.

Proof. (Sketch)

(a) To show: If x, y 2 R�0 and x 6= y then there exist open sets U and V such that x 2 U and y 2 V

and U \ V = ;.

Assume x, y 2 R�0 and x 6= y.

Let ✏ = 1
2d(x, y) and let

U = R(x�✏,x+✏) and V = R(y�✏,y+✏).

Then x = x+ 0 2 U and y = y + 0 2 V and U \ V = ;.

So R�0 is a Hausdor↵ topological space.

(b) To show: If (x1, x2, . . .) is a Cauchy sequence in R�0 then (x1, x2, . . .) converges in R�0.

To show: If (x1, x2, . . .) is a Cauchy sequence in R�0 then there exists y 2 R�0 such that
y = lim

n!1
xn.

Let (x1, x2, . . .) be a Cauchy sequence in R�0.

x1 = z1.d11d12d13 . . . ,

x2 = z2.d21d22d23 . . . ,

x3 = z3.d31d32d33 . . . ,

.

.

.

To show: There exists y 2 R�0 such that y = lim
n!1

xn.

For k 2 Z�0 let `k be such that if m,n 2 Z�`k
then d(xm, xn)  10�k.

Let y = z.d1d2d3 · · · , where

z = z`0 , d1 = d`11, d2 = d`22, . . .

To show: If k 2 Z�0 then there exists N 2 Z>0 such that if m 2 Z�N then d(xm, y) < 10�k.

Assume k 2 Z>0.

Let N = `k+1.

To show: If m 2 Z�`k+1
then d(xm, y) < 10�k.

Assume m 2 Z�`k+1
.

Then
d(xm, y)  d(xm, x`k+1

) + d(x`k+1
, y) < 10�(k+1) + 10�(k+1)

< 10�k
.

So lim
k21

xk = y.

So Cauchy sequences in R�0 converge.
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So R�0 is complete.

This proof is conceptual and easy but there is a little bit of fuzziness in this proof caused by the
fact that the decimal expansion of an element of R�0 is not uniquely determined, for example
0.999 . . . = 1.000 . . .. To remove this fuzziness use equivalence classes of Cauchy sequences in
bQ�0 as in the proof that the completion of a metric space is complete.

(c) To show: R�0 is locally compact.

To show: (ca) R�0 is Hausdor↵.

(cb) If x 2 R�0 then there exists a neighborhood N of x such that N is cover compact.

(ca) By part (b), R�0 is Hausdor↵.
(cb) To show: If x 2 R�0 then there exists a neighborhood N of x such that N is cover compact.

Assume x 2 R�0.
Let N = B1(x) = {y 2 R�0 | |y � x|  1}.
Since N ◆ B1(x) and x 2 B1(x) then N is a neighborhood of x.
Since N ✓ B2(x) then N is bounded.
Since N is closed and bounded then N is cover compact.

So R�0 is locally compact.

(d) The sequence (1, 2, 3, 4, . . .) is a sequence in R�0 that does not have a cluster point.

So R�0 is not compact.

An interval in R�0 is a set A ✓ R�0 such that

if x, y 2 A and z 2 R�0 and x < z < y then z 2 A.

Theorem 42.8. Let A ✓ R�0.

(a) A is connected if and only if A is an interval.

(b) A is compact if and only if A is closed and bounded.

Proof.

(a) ): Assume E is not an interval.

Let x, y 2 E and z 2 E
c with x < z < y.

Let A = (�1, z) \ E and B = (z,1) \ E.

Then A and B are open sets of E and, since x 2 A and y 2 B then

A 6= ;, B 6= ;, A \B = ;, and A [B = E.

So E is not connected.

(a) (: Assume E is an interval.

To show: E is connected.

Let A ✓ E and B ✓ E be open subsets of E such that

A 6= ;, B 6= ; and A [B = E.

To show: A \B 6= ;.

There exists z 2 A \B.

Let x1, y1 2 E with x1 2 A and y1 2 B.
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Switching A and B if necessary assume that x1 < y1.

Construct sequences x1, x2, . . . and y1, y2, . . . by

xi+1 =
xi + yi

2
and yi+1 = yi, if

xi + yi

2
2 A,

xi+1 = xi and yi+1 =
xi + yi

2
, if

xi + yi

2
2 B.

PUT A PICTURE HERE

By induction, xi 2 E and yi 2 E, and since E is an interval, 1
2(xi + yi) 2 E so that

xi+1 2 E and yi+1 2 E.

Also
xi+1 2 A, yi+1 2 B, xi  xi+1 < yi+1  yi,

and

|xi+1 � yi+1| 
1
2 |xi � yi|, so that |xi+1 � yi+1| 

1

2i
|x1 � y1|.

Theorem 17.10(a) says that increasing bounded sequences converge, and since the sequence
x1, x2, . . . is increasing and bounded by y1

then lim
n!1

xn exists in R.
Theorem 17.10(a) says that decreasing bounded sequences converge, and since the sequence
y1, y2, . . . is decreasing and bounded by x1

then lim
n!1

yn exists in R.
Since lim

n!1
|xn � yn| = 0 then lim

n!1
xn = lim

n!1
yn.

Let
z = lim

n!1
xn = lim

n!1
yn.

Since x1  x2  · · ·  xn < yn  yn�1  · · ·  y1 for n 2 Z>0 then

x1 < z < y1.

Since E is an interval, z 2 E.

By the characterization of closure in metric spaces via limits (Theorem 13.6),

z = lim
n!1

xn 2 A and z = lim
n!1

yn 2 B.

Case 1: z 2 A.

Since A is open then z is an interior point of A and there exists ✏ 2 E with B✏(z) ✓ A.
Since z 2 B then B✏(z) \B 6= ;.
So A \B 6= ;.

Case 2: z 2 B.

Since B is open then z is an interior point of B and there exists ✏ 2 E with B✏(z) ✓ B.
Since z 2 A then B✏(z) \A 6= ;.
So A \B 6= ;.
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So E is connected.

(b) By Theorem 4.1, E is compact if E is Cauchy compact and bounded, so

To show: (ba) If E ✓ R is bounded then E is ball compact.

(bb) If E ✓ R is closed then E is Cauchy compact.

(ba) Assume E ✓ R is bounded.
To show: E is ball compact.
Since E is bounded there exists x 2 R and M 2 R>0 such that E ✓ (x�M,x+M).
To show: If ✏ 2 R>0 then there exists ` 2 Z>0 and x1, x2, . . . , x` 2 R such that E ✓

B✏(x1) [ · · ·B✏(x`).
Assume ✏ 2 R>0.
To show: There exists ` 2 Z>0 and x1, x2, . . . , x` 2 R such that E ✓ B✏(x1) [ · · ·B✏(x`).
Let ` 2 Z>0 such that ` · ✏

2 > 2M . Let

x1 = x�M, x2 = x1 +
✏

2 , x3 = x2 +
✏

2 , . . . , x` = x1 + `
✏

2 .

Then

E ✓ (x�M,x+M)

✓ (x1 �
✏

2 , x1 +
✏

2) [ (x2 �
✏

2 , x2 +
✏

2) [ · · · (x` �
✏

2 , x` +
✏

2).

DRAWAPICTURE

So E is ball compact.
(bb) Assume E is closed.

To show: E is Cauchy compact.
To show: E is complete.
To show: If (a1, a2, . . .) is a Cauchy sequence in E then (a1, a2, . . .) converges in E.
Assume (a1, a2, . . .) is a Cauchy sequence in E.
Then (a1, a2, . . .) is a Cauchy sequence in R.
Since R is complete then limn!1 an exists in R.
To show: limn!1 an is an element of E.
Since E is closed,

E = E =
�
z 2 R | there exists a sequence (a1, a2, . . .) in E with z = lim

n!1
an

 
.

So limn!1 an 2 E = E.
So (a1, a2, . . .) converges in E.
So E is complete.

So E is ball compact and Cauchy compact in the metric space R.
So E is compact.
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