20 Tutorial 1: Proof machine

Work through proof of if W is complete the B(V, W) is complete and put the reason why each line appears where it appears. The possible reasons are:

- (a) (Proof type II) Assume the ifs
- (b) (Proof type II) To show the thens
- (c) (Rewriting) This is the definition of _____
- (d) (Proof type III) To show something exists, construct it.
- (e) (Proof type III) To show the construction is valid.
- (f) (Proof type I) Compute the left hand side.
- (g) (Proof type I) Compute the right hand side.

Practice this proof so that you can do it without referring to notes.

20.1 If W is complete then B(V, W) is complete

Theorem 20.1. Let $(V, \parallel \parallel)$ and $(W, \parallel \parallel)$ be normed vector spaces and let

$$B(V,W) = \{ linear \ transformations \ T \colon V \to W \ | \ \|T\| < \infty \} \qquad where$$

$$||T|| = \sup\left\{\frac{||Tv||}{||v||} \mid v \in V \text{ and } v \neq 0\right\}.$$

If W is complete then B(V, W) is complete.

Proof. To show: If W is complete then B(V, W) is complete. Assume W is complete.

To show: If T_1, T_2, \ldots is a Cauchy sequence in B(V, W) then T_1, T_2, \ldots converges. Assume $T_1: V \to W, T_2: V \to W, \ldots$ is a Cauchy sequence in B(V, W). To show: There exists $T: V \to W$ with $T \in B(V, W)$ such that $\lim_{n\to\infty} T_n = T$. Define $T: V \to W$ by

$$T(x) = \lim_{n \to \infty} T_n(x)$$

To show: (a) If $x \in V$ then T(x) exists.

(b)
$$T \in B(V, W)$$
.
(c) $\lim_{n \to \infty} T_n = T$.

(a) Assume $x \in V$.

To show: $\lim_{n\to\infty} T_n(x)$ exists. To show: $T_1(x), T_2(x), \ldots$ converges in W. Since W is complete, to show: $T_1(x), T_2(x), \ldots$ is Cauchy. To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r(x) - T_s(x)|| < \epsilon$. Assume $\epsilon \in \mathbb{R}_{>0}$. Using that T_1, T_2, \ldots is Cauchy, let N be such that if $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r - T_s|| < \frac{\epsilon}{||x||}$. To show: If $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r(x) - T_s(x)|| < \epsilon$. Assume $r, s \in \mathbb{Z}_{\geq N}$. To show: $||T_r(x) - T_s(x)|| < \epsilon$.

$$||T_r(x) - T_s(x)|| \le ||T_r - T_s|| \cdot ||x|| < \frac{\epsilon}{||x||} \cdot ||x|| = \epsilon.$$

So $T_1(x), T_2(x), \ldots$ is Cauchy and, since W is complete, $T_1(x), T_2(x), \ldots$ converges. So $T(x) = \lim_{n \to \infty} T_n(x)$ exists.

- (b) To show: $T \in B(V, W)$. To show: (ba) T is a linear transformation. (bb) $||T|| < \infty$.
 - (ba) To show: (baa) If $x_1, x_2 \in V$ then $T(x_1 + x_2) = T(x_1) + T(x_2)$. (bab) If $c \in \mathbb{K}$ and $x \in V$ then T(cx) = cT(x). (baa) Assume $x_1, x_2 \in V$. To show: $T(x_1 + x_2) = T(x_1) + T(x_2)$. Since each T_n is a linear transformation and since

addition
$$\stackrel{+:}{\underset{(w_1,w_2)}{\overset{W\times W}{\mapsto}}} \stackrel{W}{\underset{w_1+w_2}{\overset{W}{\mapsto}}}$$
 is continuous in W, then

$$T(x_1 + x_2) = \lim_{n \to \infty} T_n(x_1 + x_2) = \lim_{n \to \infty} (T_n(x_1) + T_n(x_2))$$

= $\lim_{n \to \infty} T_n(x_1) + \lim_{n \to \infty} T_n(x_2) = T(x_1) + T(x_2).$

(bab) Assume $c \in \mathbb{K}$ and $x \in V$. To show: T(cx) = cT(x). Since each \dot{T}_n is a linear transformation and since scalar multiplication $\begin{array}{ccc} \mathbb{K} \times W & \to & W \\ (c,w) & \mapsto & cw \end{array}$ is continuous in W,

$$T(cx) = \lim_{n \to \infty} T_n(cx) = \lim_{n \to \infty} cT_n(x) = c \lim_{n \to \infty} T_n(x) = cT(x).$$

So T is a linear transformation.

(bb) To show: $||T|| < \infty$. To show: $||T|| = \sup \left\{ \frac{||Tx||}{||x||} \mid x \in V \right\}$ exists in $\mathbb{R}_{\geq 0}$. Since $|| \ ||: W \to \mathbb{R}_{\geq 0}$ is continuous,

$$||Tx|| = ||\lim_{n \to \infty} T_n(x)|| = \lim_{n \to \infty} ||T_n(x)||$$

$$\leq \lim_{n \to \infty} ||T_n|| \cdot ||x|| = ||x|| (\lim_{n \to \infty} ||T_n||)$$

By assumption, the sequence T_1, T_2, \ldots is Cauchy and thus, since $||T_r|| - ||T_s|| \le ||T_r - T_s||$, the sequence $||T_1||, ||T_2||, \dots$ is Cauchy. Since $\mathbb{R}_{\geq 0}$ is complete, $\lim_{n \to \infty} ||T_n||$ exists. \mathbf{So}

$$||T|| = \sup\left\{\frac{||Tx||}{||x||} \mid x \in V\right\} \le \lim_{n \to \infty} ||T_n||,$$

and the right hand side exists in $\mathbb{R}_{>0}$. So $||T|| < \infty$.

So $T \in B(V, W)$. (c) To show: $\lim_{n \to \infty} T_n = T$.

To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $||T - T_n|| < \epsilon$. Assume $\epsilon \in \mathbb{R}_{>0}$. To show: There exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $||T - T_n|| < \epsilon$. Using that the sequence T_1, T_2, \ldots is Cauchy, let $N \in \mathbb{Z}_{>0}$ be such that if $m, n \in \mathbb{Z}_{>N}$ then $||T_m - T_n|| < \frac{\epsilon}{2}$. To show: If $n \in \mathbb{Z}_{\geq N}$ then $||T - T_n|| < \epsilon$. Assume $n \in \mathbb{Z}_{\geq N}$. Assume $n \in \mathbb{Z}_{\geq N}$. To show: $||T - T_n|| < \epsilon$. To show: $\sup\left\{\frac{||(T - T_n)(x)||}{||x||} \mid x \in V \text{ and } x \neq 0\right\} < \epsilon$. Assume $x \in V$ and $x \neq 0$. To show: $\frac{||(T - T_n)(x)||}{||T(x)||} < \frac{\epsilon}{2}$. To show: $\frac{\|T(x)^{\|x\|}}{\|x\|} < \frac{\epsilon}{2}.$ To show: $\frac{\|\lim_{m \to \infty} T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}.$ Using that $\| \|: W \to \mathbb{R}_{\geq 0}$ is continuous, To show: $\frac{\|\lim_{m \to \infty} T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}.$ To show: There exists $M \in \mathbb{Z}_{>0}$ such that if $m \in \mathbb{Z}_{\geq M}$ then $\frac{\|T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}.$ Let M = N. To show: If $m \in \mathbb{Z}_{\geq M}$ then $\frac{\|T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}$. Assume $m \in \mathbb{Z}_{\geq M}$. To show: $\frac{\|T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}$. Since $m, n \in \mathbb{Z}_{>N}$ then $\frac{\epsilon}{2} > \|T_m - T_n\| = \sup\left\{\frac{\|T_m(y) - T_n(y)\|}{\|y\|} \mid y \in V \text{ and } y \neq 0\right\} \ge \frac{\|T_m(x) - T_n(x)\|}{\|x\|}.$ So $\frac{\|T_m(x) - T_n(x)\|}{\|x\|} < \frac{\epsilon}{2}.$ So $\sup\left\{\frac{\|(T-T_n)(x)\|}{\|x\|} \mid x \in V \text{ and } x \neq 0\right\} \leq \frac{\epsilon}{2} < \epsilon.$ So $||T - T_n|| < \epsilon$. So $\lim_{n \to \infty} T_n = T$. So $\lim_{n \to \infty} T_n = T$. So $||T - T_n|| \le \frac{\epsilon}{2} < \epsilon$. So $\lim_{n \to \infty} ||T - T_n|| = 0$. So $\lim_{n \to \infty} T_n = T$.