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37 Tutorial 6 Limits

Learn to prove the following theorems, accurately, e�ciently, using quality proof machine, without
having to refer to notes. Learn to prove the following theorems, accurately, e�ciently, using quality
proof machine, without having to refer to notes. The first step of this process is to work through each
and put the reason why each line appears where it appears. The possible reasons are:

(a) (Proof type II) Assume the ifs

(b) (Proof type II) To show the thens

(c) (Rewriting) This is the definition of .

(d) (Proof type III) To show something exists, construct it.

(e) (Proof type III) To show the construction is valid.

(f) (Proof type I) Compute the left hand side.

(g) (Proof type I) Compute the right hand side.

Practice each proof so that you can do it e�ciently without referring to notes.

37.0.1 Alternative characterization of the metric space topology

Proposition 37.1. Let (X, d) be a strict metric space. Let

E = {10�1
, 10�2

, . . .} and let B = {B✏(x) | ✏ 2 E and x 2 X},

the set of open balls in X. Let T be the metric space topology on X. Let U ✓ X. Then U 2 T if and
only if

there exists S ✓ B such that U =
[

B2S
B.

37.0.2 Interiors and closures

Proposition 37.2. Let X be a topological space. Let A ✓ X.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

37.0.3 Limits and continuity

Theorem 37.3. Let (X, TX) and (Y, TY ) be topological spaces.
Let f : X ! Y be a function.

(a) The function f is continuous if and only if f satisfies:

if a 2 X then f is continuous at a.

(b) Let a 2 X. Then

f is continuous at a if and only if lim
x!a

f(x) = f(a).

(c) Let a 2 X such that a 2 X � {a}. Then

f is continuous at a if and only if lim
x!a

x 6=a

f(x) = f(a).
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(d) Let (X, d) be a strict metric space and let TX be the metric space topology on X. Then f is con-
tinuous if and only if f satisfies:

if (x1, x2, . . .) is a sequence in X and

if lim
n!1

xn exists then lim
n!1

f(xn) = f

⇣
lim
n!1

xn

⌘
.

37.0.4 The topology in a metric space is determined by limits of sequences

Theorem 37.4. Let (X, d) be a strict metric space and let A ✓ X and let A be the closure of A.
Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an

 
.

37.0.5 Limits in metric spaces

Proposition 37.5. Let (X, dX) and (Y, dY ) be strict metric spaces, let TX be the metric space topology
on X and let TY be the metric space topology on Y . Let f : X ! Y be a function and let y 2 Y .

(a) Let a 2 X. Then lim
x!a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and dX(x, a) < � then dY (f(x), y) < ✏.

(b) Let a 2 X such that a 2 X � {a}. Then lim
x!a

x 6=a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and 0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) Let (x1, x2, . . .) be a sequence in X and let z 2 X. Then lim
n!1

xn = z if and only if (x1, x2, . . .)

satisfies
if " 2 E then there exists ` 2 Z>0 such that if n 2 Z�` then d(xn, z) < ".
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38 Tutorial 6: Solutions

38.1 Alternative characterization of the metric space topology

Proposition 38.1. Let (X, d) be a strict metric space. Let

E = {10�1
, 10�2

, . . .} and let B = {B✏(x) | ✏ 2 E and x 2 X},

the set of open balls in X. Let T be the metric space topology on X. Let U ✓ X. Then U 2 T if and
only if

there exists S ✓ B such that U =
[

B2S
B.

Proof.

(: Assume U =
S

B2S B.
To show: U 2 T .
To show: If x 2 U then there exists ✏ 2 E such that B✏(x) ✓ U .
Assume x 2 U .
Since U =

S
B2S B then there exists B 2 S such that x 2 B.

By definition of B there exists � 2 E and y 2 X such that B = B�(y).
Since x 2 B = B�(y) then d(x, y) < �.
Let ✏ = 10�k, where k 2 Z>0 is such that 0 < 10�k

< � � d(x, y).
To show: B✏(x) ✓ B�(y).
To show: If p 2 B✏(x) then p 2 B�(y).
Assume p 2 B✏(x).
Since d(p, y)  d(p, x) + d(x, y) < ✏+ d(x, y) < � then p 2 B�(y).
So B✏(x) ✓ B�(y) ✓ U .
Since B�(y) = B and B 2 S then B✏(x) ✓ U .
So U 2 T .

): Assume U 2 T .
If x 2 U then there exists ✏x 2 E such that B✏x(x) ✓ U .
To show: There exists S ✓ B such that U =

S
B2S B.

Let S = {B✏x(x) | x 2 U}.

To show: U =
S

B2S B.
To show: (a) U ◆

S
B2S B.

(b) U ✓
S

B2S B.

(a) If B 2 S then B = B✏x(x) ✓ U .
So U ◆

S
B2S B.

(b) To show: If x 2 U then x 2

⇣S
B2S B

⌘
.

Assume x 2 U .
Since x 2 B✏x(x) and B✏x(x) 2 S then x 2

S
B2S B.

So U ✓

⇣S
B2S B

⌘
.

So U =
S

B2S B.
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38.2 Interiors and closures

Proposition 38.2. Let X be a topological space. Let A ✓ X.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof.

(a) Let I = {x 2 A | x is an interior point of A}.
To show: A� = I.
To show: (aa) I ✓ A

�.
(ab) A�

✓ I.

(aa) Let x 2 I.
Then there exists a neighborhood N of x with N ✓ A.
So there exists an open set U with x 2 U ✓ N ✓ A.
Since U ✓ A and U is open U ✓ A

�.
So x 2 A

�.
So I ✓ A

�.

(ab) Assume x 2 A
�.

Then A
� is open and x 2 A

�
✓ A.

So x is a interior point of A.
So x 2 I.
So A

�
✓ I.

So I = A
�.

(b) Let C = {x 2 X | if N 2 N (x) then N \A 6= ;} be the set of close points of A.
Then

C
c = {x 2 X | there exists N 2 N (x) such that N \A = ;}

= {x 2 X | there exists N 2 N (x) such that N ✓ A
c
}.

which is the set of interior points of Ac.
Thus, by part (a), Cc = (Ac)�.
So C = ((Ac)�)c.
To show: C = A.
To show: ((Ac)�)c = A.

Claim: If F ✓ X then (F �)c = F c.
Let F ✓ X.
Then F

� is open and (F �)c is closed.
Since F

�
✓ F , then (F �)c ◆ F

c.
So (F �)c ◆ F c.
If V is closed and V ◆ F

c then V
c is open and V

c
✓ F .

Thus, if V is closed and V ◆ F
c then V

c
✓ F

�.
Thus, if V is closed and V ◆ F

c then V ◆ (F �)c.
So (F �)c = F c.

Thus ((Ac)�)c = (Ac)c.
Thus C = ((Ac)�)c = (Ac)c = A.
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38.3 Limits and continuity

Theorem 38.3. Let (X, TX) and (Y, TY ) be topological spaces.
Let f : X ! Y be a function.

(a) f is continuous if and only if f satisfies:

if a 2 X then f is continuous at a.

(b) Let a 2 X. Then

f is continuous at a if and only if lim
x!a

f(x) = f(a).

(c) Let a 2 X such that a 2 X � {a}. Then

f is continuous at a if and only if lim
x!a

x 6=a

f(x) = f(a).

(d) Let (X, d) be a strict metric space and let TX be the metric space topology on X. Then f is con-
tinuous if and only if f satisfies:

if (x1, x2, . . .) is a sequence in X and

if lim
n!1

xn exists then lim
n!1

f(xn) = f

⇣
lim
n!1

xn

⌘
.

Proof.

(a) ): To show: If f is continuous then f satisfies: if a 2 X then f is continuous at a.
Assume f is continuous.
To show: If a 2 X then f is continuous at a.
Assume a 2 X.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
Then there exists V 2 TY such that f(a) 2 V ✓ N .
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
Let U = f

�1(V ).
Since f is continuous then U is open in X.
Since f(a) 2 V ✓ N then a 2 f

�1(V ) = U ✓ f
�1(N).

So f
�1(N) 2 N (a).

So f is continuous at a.
(a) (: Assume that if a 2 X then f is continuous at a.

To show: f is continuous.
To show: If V 2 TY then f

�1(V ) 2 TX .
Assume V 2 TY .
To show: f�1(V ) is open in X.
To show: If a 2 f

�1(V ) then a is an interior point of f�1(V ).
Assume a 2 f

�1(V ).
To show: There exists U 2 N (a) such that a 2 U ✓ f

�1(V ).
Since V 2 TY and f(a) 2 V then V 2 N (f(a)).
Since f is continuous at a then f

�1(V ) 2 N (a).
Let U = f

�1(V ).
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Then a 2 U ✓ f
�1(V ).

So a is an interior point of f�1(V ).
So f

�1(V ) is open in X.
So f is continuous.

(b) ): To show: If f is continuous at a then limx!a f(x) = f(a).
Assume f is continuous at a.
To show: limx!a f(x) = f(a).
To show: If N 2 N (f(a)) then there exists P 2 N (a) such that N ◆ f(P ).
Assume N 2 N (f(a)).
To show: There exists P 2 N (a) such that N ◆ f(P ).
Since f is continuous at a and N 2 N (f(a)) then f

�1(N) 2 N (a).
Let P = f

�1(N).
Then f(P ) = f(f�1(N)) ✓ N .
So limx!a f(x) = f(a).

(b) (: To show: If limx!a f(x) = f(a) then f is continuous at a.
Assume limx!a f(x) = f(a).
To show: f is continuous at a.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
Since limx!a f(x) = f(a) then there exists P 2 N (a) such that N ◆ f(P ).
So f

�1(N) ◆ P .
Since P 2 N (a), there exists U 2 TX such that a 2 U ✓ P .
So there exists U 2 TX such that a 2 U ✓ P ✓ f

�1(N).
So f

�1(N) 2 N (a).
So f is continuous at a.

(c) ): Assume a 2 X � {a}.
To show: If f is continuous at a then lim

x!a

x 6=a

f(x) = f(a).

Assume f is continuous at a.
To show: lim

x!a

x 6=a

f(x) = f(a).

To show: If N 2 N (f(a)) then there exists P 2 N (a) such that N ◆ f(P � {a}).
Assume N 2 N (f(a)).
To show: There exists P 2 N (a) such that N ◆ f(P � {a}).
Since f is continuous at a and N 2 N (f(a)) then f

�1(N) 2 N (a).
Let P = f

�1(N).
Then f(P � {a}) ✓ f(P ) = f(f�1(N)) ✓ N .
So lim

x!a

x 6=a

f(x) = f(a).

(c) (: Assume a 2 X � {a}.
To show: If lim

x!a

x 6=a

f(x) = f(a) then f is continuous at a.

Assume lim
x!a

x 6=a

f(x) = f(a).

To show: f is continuous at a.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
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Since lim
x!a

x 6=a

f(x) = f(a) there exists P 2 N (a) such that N ◆ f(P � {a}).

So f
�1(N) ◆ P � {a}.

Since N 2 N (f(a)) then f(a) 2 N and a 2 f
�1(N).

So f
�1(N) ◆ P .

Since P 2 N (a), there exists U 2 TX such that a 2 U ✓ P .
So there exists U 2 TX such that a 2 U ✓ P ✓ f

�1(N).
So f

�1(N) 2 N (a).
So f is continuous at a.

(d) ): Assume f is continuous.
To show: f satisfies

if (x1, x2, . . .) is a sequence in X and limn!1 xn exists

then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).

(*)

Assume (x1, x2, . . .) is a sequence in X and limn!1 xn = a.
To show: f(a) = lim

n!1
f(xn).

To show: If N 2 N (f(a)) then there exists t 2 Z>0 such that N ◆ (f(xt), f(xt+1), . . .).
Assume N 2 N (f(a)).
Since f is continuous then f

�1(N) 2 N (a).
Since limn!1 xn = a then there exists ` 2 Z>0 such that f�1(N) ◆ {x`, x`+1, . . .}.
Let t = `.
Then f

�1(N) ◆ {xt, xt+1, . . .}.
So N ◆ {f(xt), f(xt+1), . . .}.
So f satisfies (*).

(d) (: To show: If f is not continuous then f does not satisfy (*).
Assume f is not continuous.
Then there exists a such that f is not continuous at a.
So there exists N 2 N (f(a)) such that f�1(N) 62 N (a).
To show: There exists a sequence (x1, x2, . . .) such that limn!1 xn exists and limn!1 f(xn) 6=
f
�
limn!1 xn

�
.

Since f
�1(N) 62 N (a) then f

�1(N) 6◆ B10�`(a), for ` 2 Z>0. Let

x1 2 B10�1(a) \ f
�1(N)c, x2 2 B10�2(a) \ f

�1(N)c, . . . .

To show: (da) limn!1 xn = a.
(db) limn!1 f(xn) 6= f(a).

(da) To show: If P 2 N (a) then there exists ` 2 Z>0 such that if n 2 Z�` then xn 2 P .
Assume P 2 N (a).
To show: There exists ` 2 Z>0 such that P ◆ {x`, x`+1, . . .}.
Since P 2 N (a) then there exists ` 2 Z>0 such that P ◆ B10�`(a).
To show: P ◆ {x`, x`+1, . . .}.
To show: If n 2 Z�` then xn 2 P .
Assume n 2 Z�`.
Since n � ` then 10�`

 10�n and xn 2 B10�n(a) ✓ B10�`(a) ✓ P .
So P ◆ {x`, x`+1, . . .}.
So limn!1 xn = a.

(db) To show: limn!1 f(xn) 6= f(a).
To show: There exists M 2 N (f(a)) such that {j 2 Z>0 | f(xj) 2 M

c
} is infinite.

Let M = N .
To show: {j 2 Z>0 | f(xj) 2 N

c
} is infinite.

Since xj 2 f
�1(N)c then f(xj) 62 N , for j 2 Z>0.
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So {f(x1), f(x2), . . .} ✓ N
c.

So {j 2 Z>0 | f(xj) 2 N
c
} is infinite.

So limn!1 f(xn) 6= f(a).

So f does not satisfy (*).

To change the proof of (d) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10�1(a) ◆ B10�2(a) ◆ · · · by generators B1 ◆ B2 ◆ · · · of N (a), the
neighborhood filter of a.

38.4 The topology in a metric space is determined by limits of sequences

Theorem 38.4. Let (X, d) be a strict metric space and let A ✓ X and let A be the closure of A.
Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an

 
.

Proof. Let R =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an

 
.

To show: (a) R ✓ A.
(b) A ✓ R.

(a) To show: If z 2 R then z 2 A.
Assume z 2 R.
To show: z 2 A.
We know there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an.

To show: z is a close point of A.
To show: If N is a neighborhood of z then N \A 6= ;.
Assume N is a neighborhood of z.
Since limn!1 an = z then there exists ` 2 Z>0 such that if n 2 Z�` then an 2 N .
So N \A 6= ;.
So z is a close point of A.
So R ✓ A.

(b) To show: A ✓ R.
To show: If z 2 A then z 2 R.
Let z 2 A.
To show: z 2 R.
To show: There exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an.

Using that z is a close point of A,

let a1 2 B0.1(z) \A, a2 2 B0.01(z) \A, a3 2 B0.001(z) \A, . . . .

To show: z = limn!1 an.
To show: If P is a neighborhood of z then there exists ` 2 Z>0 such that if n 2 Z�` then an 2 P .
Let P be a neighborhood of z.
Then there exists ` 2 Z>0 such that B10�`(z) ✓ P .
To show: If n 2 Z�` then an 2 P .
Assume n 2 Z�`.
Since n � ` then 10�n

 10�` and

an 2 B10�n(z) ✓ B10�`(z) ✓ P,
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So lim
n!1

an = z.

So z 2 R.
So A ✓ R.

To change the proof of (b) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10�1(a) ◆ B10�2(a) ◆ · · · by generators B1 ◆ B2 ◆ · · · of N (a), the
neighborhood filter of a.

38.5 Limits in metric spaces

Proposition 38.5. Let (X, dX) and (Y, dY ) be strict metric spaces, let TX be the metric space topology
on X and let TY be the metric space topology on Y . Let f : X ! Y be a function and let y 2 Y .

(a) Let a 2 X. Then lim
x!a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and dX(x, a) < � then dY (f(x), y) < ✏.

(b) Let a 2 X such that a 2 X � {a}. Then lim
x!a

x 6=a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and 0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) Let (x1, x2, . . .) be a sequence in X and let z 2 X. Then lim
n!1

xn = z if and only if (x1, x2, . . .)

satisfies
if " 2 E then there exists ` 2 Z>0 such that if n 2 Z�` then d(xn, z) < ".

Proof. (a) By definition, lim
x!a

f(x) = y if and only if f satisfies: if N 2 N (y) then there exists

P 2 N (a) such that N ◆ f(P ).

By definition of the metric space topology, N 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ N .

Thus lim
x!a

f(x) = y if and only if f satisfies: if B✏(y) is an open ball at y then there exists B�(a), an

open ball at a such that B✏(y) ◆ f(B�(a)).

By definition, B�(a) = {x 2 X | d(x, a) < �}.

Thus, lim
x!a

f(x) = y if and only if f satisfies: if " 2 E then there exists � 2 E such that if x 2 X and

dX(x, a) < � then dY (f(x), y) < ".

(b) By definition, lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if N 2 N (y) then there exists P 2 N (a) such

that N ◆ f(P � {a}).

By definition of the metric space topology, N 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ N .

Thus lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if B✏(y) is an open ball at y then there exists B�(a), an

open ball at a such that B✏(y) ◆ f(B�(a)� {a}).

By definition, B✏(y) = {x 2 Y | d(x, y) < ✏} and B�(a)� {a} = {x 2 X | 0 < d(x, a) < �}.
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Thus, lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if ✏ 2 E then there exists � 2 E such that if x 2 X and

0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) By definition, lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if P 2 N (z) then there exists ` 2 Z>0

such that P ◆ {x`, x`+1, . . .}.

By definition of the metric space topology, P 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ P .

So lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if ✏ 2 E then there exists ` 2 Z>0 such that

B✏(z) ◆ {x`, x`+1, . . . , }.

By definition, B✏(a) = {x 2 X | d(x, a) < ✏}.

Thus, lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if ✏ 2 E then there exists ` 2 Z>0 such that if

n 2 Z�` then d(xn, z) < ✏.
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