21 Tutorial 2: Building projections in Hilbert spaces

Learn to prove the following theorems, accurately, efficiently, using quality proof machine, without having to refer to notes. The first step of this process is to work through each and put the reason why each line appears where it appears. The possible reasons are:
(a) (Proof type II) Assume the ifs
(b) (Proof type II) To show the thens
(c) (Rewriting) This is the definition of \qquad .
(d) (Proof type III) To show something exists, construct it.
(e) (Proof type III) To show the construction is valid.
(f) (Proof type I) Compute the left hand side.
(g) (Proof type I) Compute the right hand side.

Practice each proof so that you can do it efficiently without referring to notes.

21.0.1 Orthonormal sequences and Gram-Schmidt

Let \mathbb{F} be a field and let $(V,\langle\rangle$,$) be an \mathbb{F}$-vector space with a sesquilinear form. An orthonormal sequence in V is a sequence $\left(b_{1}, b_{2}, \ldots\right)$ in V such that

$$
\text { if } i, j \in \mathbb{Z}_{>0} \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

An orthogonal sequence in V is a sequence $\left(b_{1}, b_{2}, \ldots\right)$ in V such that

$$
\text { if } i, j \in \mathbb{Z}_{>0} \quad \text { and } i \neq j \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle=0
$$

Proposition 21.1. Let \mathbb{F} be a field and let $(V,\langle\rangle$,$) be an \mathbb{F}$-vector space with a Hermitian form. An orthonormal sequence $\left(a_{1}, a_{2}, \ldots\right)$ in V is linearly independent.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.
Theorem 21.2. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Assume that $n \in \mathbb{Z}_{>0}$ and that $\left(b_{1}, \ldots, b_{n}\right)$ is an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.

21.0.2 Orthogonal decomposition

Theorem 21.3. Let V be a Hilbert space. Let W be a subset of V.
(a) W^{\perp} is a closed subspace of V.
(b) W is a closed subspace of $V \quad$ if and only if $\quad V=W \oplus W^{\perp}$.

21.0.3 Building projections in Hilbert spaces

Proposition 21.4. Let H be a Hilbert space and let W be a closed subspace of H. Let

$$
d(x, W)=\inf \{d(x, w) \mid w \in W\}
$$

(a) If $x \in H$ then there exists a unique $y \in W$ such that $d(x, y)=d(x, W)$.
(b) Define $P_{W}: H \rightarrow H$ by setting $P_{W}(x)=y$ where y is as in (a). Then P_{W} is a linear transformation,

$$
\begin{aligned}
P_{W}(x) \in W, \quad\left(\mathrm{id}-P_{W}\right)(x) \in W^{\perp}, \quad & \left\|P_{W}\right\|=1 \\
P_{W}^{2}=P_{W}, \quad\left(\mathrm{id}-P_{W}\right)^{2}=\left(\mathrm{id}-P_{W}\right), \quad \text { and } \quad & \mathrm{id}=P_{W}+\left(\mathrm{id}-P_{W}\right)
\end{aligned}
$$

21.0.4 The span of an orthonormal sequence and its complement

Theorem 21.5. Let H be a Hilbert space. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an orthonormal sequence in H and let

$$
W=\operatorname{span}\left\{a_{1}, a_{2}, \ldots\right\} . \quad \text { Then } \quad H=\bar{W} \oplus \bar{W}^{\perp}
$$

22 Tutorial 2: Solutions

22.1 Orthonormal sequences and Gram-Schmidt

Proposition 22.1. Let V be an \mathbb{F}-vector space with a sesquilinear form. An orthonormal sequence $\left(b_{1}, b_{2}, \ldots\right)$ in V is linearly independent.

Proof. Let $\left(b_{1}, b_{2}, \ldots\right)$ be an orthonormal sequence in V.
To show: $\left\{b_{1}, b_{2}, \ldots\right\}$ is linearly independent.
To show: If $\ell \in \mathbb{Z}_{>0}$ and $c_{1}, \ldots, c_{\ell} \in \mathbb{F}$ and $c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{\ell} a_{\ell}=0$ then $c_{1}=0, c_{2}=0, \ldots, c_{\ell}=0$.
Assume $\ell \in \mathbb{Z}_{>0}$ and and $c_{1}, \ldots, c_{\ell} \in \mathbb{F}$ and $c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{\ell} a_{\ell}=0$.
To show: If $j \in\{1, \ldots, \ell\}$ then $c_{j}=0$.
Assume $j \in\{1, \ldots, \ell\}$.
Then $0=\left\langle c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{\ell} b_{\ell}, a_{j}\right\rangle=c_{j}\left\langle b_{j}, b_{j}\right\rangle=\mu_{j}$.
So $\left\{b_{1}, b_{2}, \ldots\right\}$ is linearly independent.
Theorem 22.2. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.
Proof. (a) To show: If $i, j \in \mathbb{Z}_{>0}$ and $i \neq j$ then $\left\langle b_{i}, b_{j}\right\rangle=0$.
To show: If $n+1 \in \mathbb{Z}_{>0}$ and $j \in\{1, \ldots, n\}$ then $\left\langle b_{n+1}, b_{j}\right\rangle=0$.
The proof is by induction on n.
The base case $n+1=1$ is vacuously true since $\{1, \ldots, n\}=\emptyset$.
Assume $n+1 \in \mathbb{Z}_{>1}$.
To show: If $j \in\{1, \ldots, n\}$ then $\left\langle b_{n+1}, b_{j}\right\rangle=0$.
Assume $j \in\{1, \ldots, n\}$.

Then, by induction, $\left\langle b_{i}, b_{j}\right\rangle=0$ for $i \in\{1, \ldots, j-1\}$ and $\left\langle b_{k}, b_{j}\right\rangle=0$ for $k \in\{j+1, \ldots, n\}$ so that

$$
\begin{aligned}
\left\langle b_{n+1}, b_{j}\right\rangle & =\left\langle p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle}\left\langle b_{1}, b_{j}\right\rangle-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle}\left\langle b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{j}\right\rangle}{\left\langle b_{j}, b_{j}\right\rangle}\left\langle b_{j}, b_{j}\right\rangle=\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{j}\right\rangle=0
\end{aligned}
$$

Since \langle,$\rangle is sesquilinear then \left\langle b_{j}, b_{n+1}\right\rangle=\overline{\left\langle b_{n+1}, b_{j}\right\rangle}=\overline{0}=0$ (where the last equality is true since ???). So $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence.
(b) Let $i, j \in\{1, \ldots, n\}$.

Since $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is orthogonal then

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle\frac{b_{i}}{\left\|b_{i}\right\|}, \frac{b_{j}}{\left\|b_{j}\right\|}\right\rangle=\frac{1}{\left\|b_{i}\right\| \overline{\left\|b_{j}\right\|}}\left\langle b_{i}, b_{j}\right\rangle=0, \quad \text { if } i \neq j
$$

If $i=j$ then

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle\frac{b_{i}}{\left\|b_{i}\right\|}, \frac{b_{i}}{\left\|b_{i}\right\|}\right\rangle=\frac{1}{\left\|b_{i}\right\| \overline{\left\|b_{i}\right\|}}\left\langle b_{i}, b_{i}\right\rangle=\frac{\left\|b_{i}\right\|^{2}}{\left\|b_{i}\right\|\left\|b_{i}\right\|}=1
$$

(where the next to last equality is true since ????)

22.2 Orthogonal decomposition

Theorem 22.3. Let V be a Hilbert space. Let W be a subset of V.
(a) W^{\perp} is a closed subspace of V.
(b) W is a closed subspace of $V \quad$ if and only if $\quad V=W \oplus W^{\perp}$.

Proof. (a) Let

$$
\begin{aligned}
\Phi: \quad V & \rightarrow W^{*} \\
v & \mapsto
\end{aligned} \quad \Phi_{v} \quad \text { where } \begin{array}{rlrl}
\Phi_{v}: & W & \rightarrow & \mathbb{K} \\
w & \mapsto & \langle v, w\rangle
\end{array}
$$

Then

$$
W^{\perp}=\{v \in V \mid \text { if } w \in W \text { then }\langle v, w\rangle=0\}=\left\{v \in V \mid \Phi_{v}=0\right\}=\operatorname{ker} \Phi=\Phi^{-1}(\{0\})
$$

Since $\{0\}$ is closed in W^{*} and Φ is continuous then $W^{\perp}=\Phi^{-1}(\{0\})$ is closed.
(b) Assume that W is a closed subspace of V.

To show: (ba) $H=\bar{W}+\bar{W}^{\perp}$.
(bb) $\bar{W} \cap \bar{W}^{\perp}=0$.
(ba) If $x \in H$ then $x=P(x)+(x-P(x)) \in \bar{W}+\bar{W}^{\perp}$.

$$
\text { So } H=\bar{W}+\bar{W}^{\perp} \text {. }
$$

(bb) If $y \in \bar{W} \cap \bar{W}^{\perp}$ then $\langle y, y\rangle=0$, forcing that $y=0$.

$$
\text { So } \bar{W} \cap \bar{W}^{\perp}=0
$$

22.3 Building projections in Hilbert spaces

Proposition 22.4. Let H be a Hilbert space and let W be a closed subspace of H. Let

$$
d(x, W)=\inf \{d(x, w) \mid w \in W\} .
$$

(a) If $x \in H$ then there exists a unique $y \in W$ such that $d(x, y)=d(x, W)$.
(b) Define $P_{W}: H \rightarrow H$ by setting $P_{W}(x)=y$ where y is as in (a). Then P_{W} is a linear transformation,

$$
\begin{aligned}
P_{W}(x) \in W, \quad\left(\mathrm{id}-P_{W}\right)(x) \in W^{\perp}, \quad & \left\|P_{W}\right\|=1, \\
P_{W}^{2}=P_{W}, \quad\left(\mathrm{id}-P_{W}\right)^{2}=\left(\mathrm{id}-P_{W}\right), \quad \text { and } \quad & \mathrm{id}=P_{W}+\left(\mathrm{id}-P_{W}\right) .
\end{aligned}
$$

Proof. (a) Assume $x \in H$.
To show: (aa) There exists $y \in W$ such that $d(x, y)=d(x, W)$.
(ab) If $y, y^{\prime} \in W$ such that $d(x, y)=d\left(x, y^{\prime}\right)=d(x, W)$ then $y=y^{\prime}$.
(aa) Let $\alpha=d(x, W)$
Let $\left(y_{1}, y_{2}, \ldots\right)$ be a sequence in W such that

$$
\lim _{n \rightarrow \infty}\left\|x-y_{n}\right\|=\alpha
$$

To show: There exists $y \in W$ such that $\lim _{n \rightarrow \infty} y_{n}=y$.
Since W is closed, To show: There exists $y \in H$ such that $\lim _{n \rightarrow \infty} y_{n}=y$.
Since H is complete, To show: $\left(y_{1}, y_{2}, \ldots\right)$ is a Cauchy sequence.
To show: If $\epsilon \in \mathbb{R}_{\geq 0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq N}$ then $\left\|y_{m}-y_{n}\right\|<\epsilon$. Assum $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $N \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq N}$ then $\left\|y_{m}-y_{n}\right\|<\epsilon$.
Let

$$
\delta=\min \left\{1, \frac{\epsilon}{8 \alpha+4}\right\}
$$

and let $N \in \mathbb{Z}_{\geq 0}$ such that if $m \in \mathbb{Z}_{\geq N}$ then $\left|\left|x-y_{m} \|-\alpha\right|<\delta\right.$.
Since $\frac{1}{2}\left(y_{m}+y_{n}\right) \in W$ then $\left\|x-\frac{1}{2}\left(y_{m}+y_{n}\right)\right\|^{2} \geq \alpha^{2}$ and the parallelogram identity gives that

$$
\begin{aligned}
\left\|y_{m}-y_{n}\right\|^{2} & =2\left\|x-y_{m}\right\|^{2}+2\left\|x-y_{n}\right\|^{2}-4\left\|x-\frac{1}{2}\left(y_{m}+y_{n}\right)\right\|^{2} \\
& <2(\alpha+\delta)^{2}+2(\alpha+\delta)^{2}-4 \alpha^{2}=8 \alpha \delta+4 \delta^{2}=\delta(8 \alpha+4 \delta) \\
& \leq \delta(8 \alpha+4) \leq \frac{\epsilon}{(8 \alpha+4)}(8 \alpha+4)=\epsilon .
\end{aligned}
$$

So $\left(y_{1}, y_{2}, \ldots\right)$ is Cauchy.
So $y=\lim _{n \rightarrow \infty} y_{n}$ exists and

$$
d(x, y)=\lim _{n \rightarrow \infty} d\left(x, y_{n}\right)=\lim _{n \rightarrow \infty}\left\|x-y_{n}\right\|=\alpha=d(x, W) .
$$

(ab) Assume $y, y^{\prime} \in W$ and $d(x, y)=d\left(x, y^{\prime}\right)=d(x, W)$.
Since $\frac{1}{2}\left(y+y^{\prime}\right) \in W$ gives that $d\left(x, \frac{1}{2}\left(y+y^{\prime}\right)\right) \geq d(x, W)=\alpha$, the parallelogram identity gives

$$
\begin{aligned}
\left\|y-y^{\prime}\right\|^{2} & =2\|x-y\|^{2}+2\left\|x-y^{\prime}\right\|^{2}-4\left\|x-\frac{1}{2}\left(y+y^{\prime}\right)\right\|^{2} \\
& =2 d(x, y)^{2}+2 d\left(x, y^{\prime}\right)^{2}-4 d\left(x, \frac{1}{2}\left(y+y^{\prime}\right)\right)^{2} \\
& \leq 2 \alpha^{2}+2 \alpha^{2}-4 \alpha^{2}=0 .
\end{aligned}
$$

So $y=y^{\prime}$.
Step 3. To show: $x-P_{W}(x) \in W^{\perp}$.
Let $y=P_{W}(x)$.
Let $w \in W$.
By Step 1 , the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(\lambda)=\|x-(y+\lambda w)\|^{2}=\|x-y\|^{2}+|\lambda|^{2}\|v\|^{2}+2 \operatorname{Re}(\langle x-y, \lambda w\rangle)
$$

has unique global minimum at $\lambda=0$.
So $f^{\prime}(0)=0$.
So $\operatorname{Re}(\langle x-y, w\rangle)=0$.
Similarly, $\operatorname{Re}(\langle x-y, i w\rangle)=0$.
So $\langle x-y, w\rangle=0+0 i$.
Step 4. P_{W} and id $-P_{W}$ are linear operators.
Assume $v_{1}, v_{2} \in H$ and $c_{1}, c_{2} \in \mathbb{K}$.
Then $c_{1} P_{W}\left(v_{1}\right)+c_{2} P_{W}\left(v_{2}\right) \in W$ and $c_{1} v_{1}+c_{2} v_{2}-\left(c_{1} P_{W}\left(v_{1}\right)+c_{2} P_{W}\left(v_{2}\right)\right) \in W^{\perp}$.
So $P_{W}\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} P_{W}\left(v_{1}\right)+c_{2} P_{W}\left(v_{2}\right)$.
So P_{W} is linear.
So P_{W} and id $-P_{W}$ are linear operators.
Step 5. $\left\|P_{W}\right\|=1$.
Assume $v \in H$ and $v \neq 0$.
Since $\left\langle P_{W}(v),\left(\mathrm{id}-P_{W}\right)(v)\right\rangle=0$ then the Pythagorean theorem gives

$$
\frac{\left\|P_{W}(v)\right\|^{2}}{\|v\|^{2}} \leq \frac{\left\|P_{W}(v)\right\|^{2}+\left\|\left(\mathrm{id}-P_{W}\right)(v)\right\|^{2}}{\|v\|^{2}}=\frac{\|v\|^{2}}{\|v\|^{2}}=1
$$

So $\left\|P_{W}\right\| \leq 1$.
If $w \in W$ then $P_{W}(w)=w$ so that

$$
\left\|P_{W}(w)\right\|=\|w\| \quad \text { and } \quad\left\|P_{W}\right\| \geq 1
$$

So $\left\|P_{W}\right\|=1$.

22.4 The span of an orthonormal sequence and its complement

Theorem 22.5. Let H be a Hilbert space. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an orthonormal sequence in H and let

$$
W=\operatorname{span}\left\{a_{1}, a_{2}, \ldots\right\} . \quad \text { Then } \quad H=\bar{W} \oplus \bar{W}^{\perp}
$$

Proof.
Step 1. (Bessel's inequality) If $x \in H$ then $\sum_{n=1}^{\infty}\left|\left\langle x, a_{n}\right\rangle\right|^{2} \leq\|x\|^{2}$.

Step 2. If $x \in H$ then $P(x)=\sum_{n=1}^{\infty}\left\langle x, a_{n}\right\rangle a_{n} \quad$ exists in H.
Step 3. If $x \in H$ then $P(x) \in \bar{W}$.
Step 4. If $x \in H$ then $x-P(x) \in \bar{W}^{\perp}$.
Step 5. If $x \in H$ then $P(x)=P_{\bar{W}}(x)$.
Step 1. To show: $\lim _{k \rightarrow \infty}\left(\sum_{n=1}^{k}\left|\left\langle x, a_{n}\right\rangle\right|^{2}\right) \leq\|x\|^{2}$.
Assume $k \in \mathbb{Z}_{\geq 0}$. Let

$$
x_{k}=\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle a_{n} \quad \text { so that } \quad\left\|x_{k}\right\|^{2}=\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle \overline{\left\langle x, a_{n}\right\rangle}=\sum_{n=1}^{k}\left|\left\langle x, a_{n}\right\rangle\right|^{2} .
$$

To show: $\left\|x_{k}\right\|^{2} \leq\|x\|^{2}$.
Then

$$
\begin{aligned}
\left\langle x-x_{k}, x_{k}\right\rangle & =\left\langle x, x_{k}\right\rangle-\left\langle x_{k}, x_{k}\right\rangle \\
& =\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle \overline{\left\langle x, a_{n}\right\rangle}-\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle \overline{\left\langle x, a_{n}\right\rangle}=0, \quad \text { and } \\
\|x\|^{2} & =\langle x, x\rangle=\left\langle x_{k}+\left(x-x_{k}\right), x_{k}+\left(x-x_{k}\right)\right\rangle \\
& =\left\langle x_{k}, x_{k}\right\rangle+\left\langle x_{k}, x-x_{k}\right\rangle+\left\langle x-x_{k}, x_{k}\right\rangle+\left\langle x-x_{k}, x-x_{k}\right\rangle \\
& =\left\|x_{k}\right\|^{2}+0+0+\left\|x-x_{k}\right\|^{2} .
\end{aligned}
$$

So $\left\|x_{k}\right\|^{2} \leq\|x\|^{2}$.
So $\sum_{n=1}^{\infty}\left|\left\langle x, a_{n}\right\rangle\right|^{2}=\lim _{k \rightarrow \infty}\left(\sum_{n=1}^{k}\left|\left\langle x, a_{n}\right\rangle\right|^{2}\right)=\lim _{k \rightarrow \infty}\left\|x_{k}\right\|^{2} \leq\|x\|^{2}$.
Step 2. Assume $x \in H$.
Let $x_{k}=\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle a_{n}$.
To show: $\lim _{k \rightarrow \infty} x_{k}$ exists in H.
Since H is complete, we need
To show: $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence in H.
We know that $\left\|x_{k}\right\|=\sum_{n=1}^{k}\left\langle x, a_{n}\right\rangle^{2}$ so that, by Bessel's inequality,
$\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right)$ is a increasing sequence in $\mathbb{R}_{\geq 0}$ bounded by $\|x\|$.
So ($\left.\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right)$ converges.

$$
\text { Let } \quad y=\lim _{k \rightarrow \infty}\left\|x_{k}\right\| \text {. }
$$

To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq N}$ then $\left\|x_{r}-x_{s}\right\|<\epsilon$.
Assume $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $N \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq N}$ then $\left\|x_{r}-x_{s}\right\|<\epsilon$.
Let $N \in \mathbb{Z}_{>0}$ such that if $k \in \mathbb{Z}_{\geq N}$ then $\left|y^{2}-\left\|x_{k}\right\|^{2}\right|<\frac{\epsilon}{2}$.

Assume $r, s \in \mathbb{Z}_{\geq N}$.
To show: $\left\|x_{r}-x_{s}\right\|<\epsilon$.

$$
\begin{aligned}
\left\|x_{r}-x_{s}\right\|^{2} & =\left\|\sum_{j=1}^{r}\left\langle x, a_{j}\right\rangle a_{j}-\sum_{j=1}^{s}\left\langle x, a_{j}\right\rangle a_{j}\right\|^{2}=\left\|\sum_{j=r+1}^{s}\left\langle x, a_{j}\right\rangle a_{j}\right\|^{2}=\sum_{j=r+1}^{s}\left\langle x, a_{j}\right\rangle^{2} \\
& =\left|\left\|x_{s}\right\|^{2}-\left\|x_{r}\right\|^{2}\right|=\left|\left\|x_{s}\right\|^{2}-y^{2}+y^{2}-\left\|x_{r}\right\|^{2}\right| \\
& \leq\left|\left\|x_{s}\right\|^{2}-y^{2}\right|+\left|y^{2}-\left\|x_{r}\right\|^{2}\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

So $\left(x_{1}, x_{1}, \ldots\right)$ is a Cauchy sequence in H.
So $\lim _{k \rightarrow \infty} x_{k}$ exists in H.
So $\sum_{j=1}^{\infty}\left\langle x, a_{j}\right\rangle a_{j}$ exists in H.
Step 3. To show: $\sum_{n=1}^{\infty}\left\langle x, a_{n}\right\rangle a_{n} \in \bar{W}$.
Since

$$
x_{k}=\sum_{j=1}^{k}\left\langle x, a_{j}\right\rangle a_{j} \quad \text { is an element of } \operatorname{span}\left\{a_{1}, a_{2}, \ldots\right\}=W
$$

then $P(x)=\lim _{k \rightarrow \infty} x_{k} \in \bar{W}$.
Step 4. To show: If $b \in \bar{W}$ then $\langle x-P(x), b\rangle=0$.
Assume $b \in \bar{W}$.
Let $\left(b_{1}, b_{2}, \ldots\right)$ be a sequence in W with $\lim _{n \rightarrow \infty} b_{n}=b$.
To show: $\langle x-P(x), b\rangle=0$.
Using that $\langle x-P(x), \cdot\rangle: H \rightarrow \mathbb{C}$ is continuous,

$$
\langle x-P(x), b\rangle=\left\langle x-P(x), \lim _{n \rightarrow \infty} b_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x-P(x), b_{n}\right\rangle .
$$

Since $b_{n} \in W$ there exists $\ell \in \mathbb{Z}_{\geq 0}$ and $c_{1}, c_{2}, \ldots, c_{\ell} \in \mathbb{C}$ such that

$$
b_{n}=\sum_{r=1}^{\ell} c_{r} a_{r} \quad \text { and } \quad\left\langle x-P(x), b_{n}\right\rangle=\sum_{r=1}^{\ell} \overline{c_{r}}\left\langle x-P(x), a_{r}\right\rangle .
$$

Using that $\left\langle\cdot, a_{r}\right\rangle: H \rightarrow \mathbb{C}$ is continuous and that $\left\langle x_{k}, a_{r}\right\rangle=\left\langle x, a_{r}\right\rangle$ for $k \geq r$ then

$$
\begin{aligned}
\left\langle x-P(x), a_{r}\right\rangle & =\left\langle x, a_{r}\right\rangle-\left\langle P(x), a_{r}\right\rangle=\left\langle x, a_{r}\right\rangle-\left\langle\lim _{k \rightarrow \infty} x_{k}, a_{r}\right\rangle \\
& =\left\langle x, a_{r}\right\rangle-\lim _{k \rightarrow \infty}\left\langle x, a_{r}\right\rangle=\left\langle x, a_{r}\right\rangle-\left\langle x, a_{r}\right\rangle=0 .
\end{aligned}
$$

So

$$
\left\langle x-P(x), b_{n}\right\rangle=\sum_{j=1}^{\ell} \overline{c_{j}}\left\langle x-P(x), a_{j}\right\rangle=0 .
$$

Thus

$$
\langle x-P(x), b\rangle=\lim _{n \rightarrow \infty}\left\langle x-P(x), b_{n}\right\rangle=\lim _{n \rightarrow \infty} 0=0 .
$$

So $x-P(x) \in \bar{W}^{\perp}$.

Step 5. Since $x-P(x) \in \bar{W}^{\perp}, x-P_{\bar{W}} \in \bar{W}^{\perp}$ and $P(x)-P_{\bar{W}} \in \bar{W}$ then

$$
\begin{aligned}
\left\|P(x)-P_{\bar{W}}(x)\right\|^{2} & \left.=\| P(x)-x+\left(x-P_{\bar{W}}(x)\right), P(x)-P_{\bar{W}}(x)\right\rangle \\
& =\left\langle P(x)-x, P(x)-P_{\bar{W}}(x)\right\rangle+\left\langle\left(x-P_{\bar{W}}(x)\right), P(x)-P_{\bar{W}}(x)\right\rangle \\
& =0+0=0 .
\end{aligned}
$$

So $P(x)=P_{\bar{W}}(x)$.

