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6 Uniform spaces

Let X be a set. The set of (ordered) pairs of elements of X is

X ⇥X = {(x1, x2) | x1, x2 2 X}. The diagonal is �(X) = {(x, x) | x 2 X},

a subset of X ⇥X. For E ✓ X ⇥X let

�(E) = {(y, x) 2 X ⇥X | (x, y) 2 D}, and

E ⇥X E = {(x, y) 2 X ⇥X | there exists z 2 X such that (x, z) 2 E and (z, y) 2 E}.

A uniformity on X is a collection E of subsets of X ⇥X such that

(a) (diagonal condition) If E 2 E then �(X) ✓ E,

(b) (upper ideal) If E 2 E and D ✓ X ⇥X and D ◆ E then D 2 E ,

(c) (finite intersection) If ` 2 Z>0 and E1, E2, . . . , E` 2 E then E1 \ E2 \ · · · \ E` 2 E ,

(d) (symmetry condition) If E 2 E then �(E) 2 E ,

(e) (triangle condition) If E 2 E then there exists D 2 E such that D ⇥X D ✓ E.

A uniform space is a set X with a uniformity E on X. An fatdiagonal, or entourage, is a set in E .

6.1 Uniform spaces can be made into topological spaces

Let (X, E) be a uniform space.

Let E 2 E and x 2 X. The E-neighborhood of x is

BE(x) = {y 2 X | (x, y) 2 E}.

Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists E 2 X such that N ◆ BE(x)}.

The uniform space topology on X is the topology

T = {U ✓ X | if x 2 U then there exists E 2 E such that BE(x) ✓ U}.

Proposition 6.1. Let (X, E) be a uniform space. Let x 2 X and let N (x) be the neighborhood filter
of x for the uniform space topology. Then

N (x) = {BE(x) | E 2 E}.
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6.2 The categories of topological and uniform spaces

Continuous functions are for comparing topological spaces.

Let (X, TX) and (Y, TY ) be topological spaces. A continuous function from X to Y is a function
f : X ! Y such that

if V 2 TY then f
�1(V ) 2 TX ,

where f
�1(V ) = {x 2 X | f(x) 2 V }.

An isomorphism of topological spaces, or homeomorphism, is a continuous function f : X ! Y such
that the inverse function f

�1 : Y ! X exists and is continuous.

Uniformly continuous functions are for comparing uniform spaces.

Let (X, EX) and (Y, EY ) be uniform spaces. A uniformly continuous function from X to Y is a function
f : X ! Y such that

if E 2 EY then (f ⇥ f)�1(E) 2 EX .

An isomorphism of uniform spaces is a uniformly continuous function f : X ! Y such that the inverse
function f

�1 : Y ! X exists and is uniformly continuous.

The following proposition is the key point for establishing that T op, topological spaces with con-
tinuous functions, and Unif , uniform spaces with uniformly continuous functions, are categories and
that the uniform space topology provides a functor Unif ! T op.

Proposition 6.2.

(a) Let (X, TX), (Y, TY ) and (Z, TZ) be topological spaces and let f : X ! Y and g : Y ! Z be contin-
uous functions. Then

g � f : X ! Z is a continuous function.

(b) Let (X, EX), (Y, EY ) and (Z, EZ) be uniform spaces and let f : X ! Y and g : Y ! Z be uniformly
continuous functions. Then

g � f : X ! Z is a uniformly continuous function.

(c) Let (X, EX) and (Y, EY ) be uniform spaces. Let TX be the uniform space topology on (X, EX) and
let TY be the uniform space topology on (Y, EY ).

If f : X ! Y is uniformly continuous then f : X ! Y is continuous.

6.3 Metric spaces can be made into uniform spaces

A tolerance is a number of decimal places of accuracy to achieve in a measurement. The set of
tolerances is

E = {10�1
, 10�2

, . . .}.

Let (X, d) be a metric space.

• Let x 2 X and ✏ 2 E. The open ball of radius ✏ at x is

B✏(x) = {y 2 X | d(x, y) < ✏}.

• Let ✏ 2 E. The diagonal of width ✏, or ✏-diagonal, is

B✏ = {(y, x) 2 X ⇥X | d(x, y) < ✏}.
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Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists ✏ 2 E such that N ◆ B✏(x)}.

The metric space topology on X is

T = {U ✓ X | if x 2 U then there exists ✏ 2 E such that B✏(x) ✓ U}.

The metric space uniformity on X is

E = {subsets of X ⇥X which contain an ✏-diagonal}.

More precisely, E ✓ X ⇥X is a fatdiagonal in X if and only if

there exists ✏ 2 E such that E ◆ B✏.

6.4 epsilon-delta characterizations of continuity and uniform continuity

The set
E = {10�k

| k 2 Z>0} is the accuracy set.

Specifying an element of E specifies the desired number of decimal places of accuracy.

Proposition 6.3. Let (X, dX) and (Y, dY ) be metric spaces and let f : X ! Y be a function.

(a) The function f : X ! Y is continuous if and only if f satisfies

if ✏ 2 E and a 2 X then there exists � 2 E such that
if x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.

(b) The function f : X ! Y is uniformly continuous if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if a, x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.

Proposition 6.4. Let (X, EX) and (Y, EY ) be uniform spaces and let f : X ! Y be a function.

(a) The function f : X ! Y is continuous if and only if f satisfies

if E 2 EY and a 2 X then there exists D 2 EX such that
if x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.

(b) The function f : X ! Y is uniformly continuous if and only if f satisfies

if E 2 EY then there exists D 2 EX such that
if a, x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.

6.5 Uniform spaces come from metric spaces

If E ✓ X ⇥X then

E ./ E = {(x, y) 2 X ⇥X | there exists z 2 X such that (x, z) 2 E and (z, y) 2 E}.

Let (X, E) be a uniform space. For each E 2 E fix E1, E2, E3, . . . 2 E given by

E1 = E \ �(E) and Ek+1 = Dk+1 \ �(Dk+1)
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where Dk+1 2 E is chosen such that Dk+1 ./ Dk+1 ✓ Ek. Fix U1, U2, . . . 2 E given by

U1 = E1, and Uk+1 = Fk+1 \ �(Fk+1)

where Fk+1 2 E is chosen such that Fk+1 ./ Fk+1 ./ Fk+1 ✓ (Uk \ Ek). Define g : X ⇥X ! R�0 by

g(x, y) =

8
><

>:

1, if (x, y) 62 U1,

2�k
, if (x, y) 2 U1, (x, y) 2 U2, . . . , (x, y) 2 Uk and (x, y) 62 Uk+1,

0, if (x, y) 2 Uk for k 2 Z>0,

(6.1)

and define d : X ⇥X ! R�0 [ {1} by

d(x, y) = inf{g(x, z1) + g(z1, z2) + · · ·+ g(zp�1, y) | p 2 Z>0, z1, . . . , zp 2 X, zp = y}. (6.2)

Let

XE = {D ✓ X ⇥X | there exists k 2 Z>0 such that D ◆ Ek},

XU = {D ✓ X ⇥X | there exists k 2 Z>0 such that D ◆ Uk} and (6.3)

Xd = {D ✓ X ⇥X | there exists ✏ 2 E such that D ◆ B✏},

so that Xd is the metric space topology on (X, d).
The following proposition tells us that every uniform space (X, E) can be obtained as a supremum

of uniformities that come from metrics.

Proposition 6.5. Let (X, E) be a uniform space.

(a) Let E 2 E and let d,XE ,XU and Xd be as defined in (6.2) and (6.3). Then

XE is a uniformity on X, d is a metric on X, and XE = XU = Xd.

(b) E = sup{XE | E 2 E}.

6.6 Notes and References

6.6.1 Math is not broken: uniform continuity

When I was an undergraduate, a graduate student and for the first 15 years of my career as a pro-
fessional mathematician, the di↵erence between continuous and uniformly continuous functions was
terrifying to me. This was compounded with the definitions of uniform convergence and pointwise
convergence which, all together, left me in a serious muddle. At some point, perhaps the second time
I was teaching this topic out of the Baby Rudin book [BRu], my “proof machine” skills had finally
gotten strong enough that I was able to get all the “for all” and “for each” out of the definitions, put
them only in an “if-then-there exists” form and actually look and see what the logical di↵erences were:

A function f : X ! Y is continuous if f satisfies:

if x 2 X and ✏ 2 R>0 then there exists � 2 R>0 such that
if y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.

A function f : X ! Y is uniformly continuous if f satisfies:

if ✏ 2 R>0 then there exists � 2 R>0 such that
if x 2 X and y 2 X and d(x, y) < � then ⇢(f(x), f(y)) < ✏.
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The sequence (f1, f2, . . .) in F converges pointwise to f if the sequence (f1, f2, . . .) satisfies

if x 2 X and ✏ 2 R>0 then there exists ` 2 Z>0 such that
if n 2 Z�` then d(fn(x), f(x)) < ✏.

The sequence (f1, f2, . . .) in F converges uniformly to f if the sequence (f1, f2, . . .) satisfies

if ✏ 2 R>0 then there exists ` 2 Z>0 such that
if x 2 X and n 2 Z�` then d(fn(x), f(x)) < ✏.

The first few times I met this subject I was not proficient enough at logical manipulation to even
parse the huge numbers of quantifiers in a definition like the definition of a continuous function. I
had just been too glazed over to realize that pointwise convergence and uniform convergence are
about sequences of functions so I should not have been mixing those up with continuity and uniform
continuity at all.

I was thrilled when I learned from Bourbaki that there are uniform spaces and uniformly con-
tinuous functions are for comparing uniform spaces in the same way that continuous
functions are for comparing topological spaces.

6.6.2 The bridge

With uniform spaces, this part of math has a beautiful structure, where the “fatdiagonals” of a uniform
space are for keeping track of which pairs of points are within ✏ of each other in the same way that for
metric spaces the “open sets” are trying to keeping track of the points in the ✏-ball around a central
point. Cauchy sequences are a natural construct in the uniform space context, and compactness and
completeness now have their proper homes in the world of topological spaces and uniform spaces,
respectively.

The definition of uniform spaces in Section 11.2 follows [Bou, Top. Ch. II]. It is structured to
model and highlight the analogies to topological spaces, and to provide a bridge between topological
spaces and metric spaces. It is helpful to remember that the elements of a uniformity are called
“entourages” or “fatdiagonals”, in the same way that the elements of a topology are called “open
sets”. The category of uniform spaces is the natural home for uniformly continuous
functions, Cauchy sequences and completion.

The relation between metric spaces and uniform spaces becomes vivid through Propositions 6.3
and 6.4 which give epsilon-delta characterizations of continuity and uniform continuity for metric
spaces and uniform spaces. Via these results uniform spaces form a perfect bridge between topological
spaces and metric spaces.

6.6.3 Uniform spaces and the category of metric spaces

Proposition 6.5 says that that if the collection of strict metric spaces is enlarged to include metrics
that take value 1 and to include ‘limits’ (supremums) of metric spaces then one naturally obtains the
category of uniform spaces. Hence, in the same way that one discovers the real numbers by filling in
the holes in the set of rational numbers (by filling in the limit points), one discovers that the category
of uniform spaces is what is obtained by filling in the holes in the set of metric spaces (by filling in
the limit spaces).

The uniform spaces with the uniformly continuous functions form a category since a composition of
uniformly continuous functions is uniformly continuous. The definition of the uniform space topology
then gives a functor from the category of uniform spaces to the category of topological spaces.
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6.7 Some proofs

6.7.1 The neighborhood filter of a uniform space

Proposition 6.6. Let (X, E) be a uniform space. Let x 2 X and let N (x) be the neighborhood filter
of x for the uniform space topology. Then

N (x) = {BE(x) | E 2 E}.

Proof. To show: N (x) = {BE(x) | E 2 E}.
By definition N (x) = {N ✓ X | there exists E 2 E such that N ◆ BE(x)}.
To show: (a) N (x) ◆ {BE(x) | E 2 E}.

(b) N (x) ✓ {BE(x) | E 2 E}.

(a) This is direct from the definition of N (x).

(b) To show: If N 2 N (x) then there exists W 2 E such that N = BW (x).

Assume N 2 N (x).

Then there exists E 2 E with N ◆ BE(x).

To show: There exists W 2 E such that N = BW (x).

Let W = {(y, x) | y 2 N}.

If (y, x) 2 E then y 2 BE(x) ✓ N and so (y, x) 2 W .

Thus W ◆ E.

Since E 2 E and W ✓ X ⇥X and W ◆ E then W 2 E .

To show: N = BW (x).

To show: (a) N ✓ BW (x).

(b) BW (x) ✓ N .

(a) Assume n 2 N .
Then (n, x) 2 W and n 2 BW (x).
So N ✓ BW (x).

(b) Assume y 2 BW (x).
Then (y, x) 2 W .
Thus, by the definition of W , y 2 N .
So BW (x) ✓ N .

So N = BW (x).

So N (x) = {BE(x) | E 2 E}.

6.8 Uniformly continuous functions

Proposition 6.7.

(a) Let (X, TX), (Y, TY ) and (Z, TZ) be topological spaces and let f : X ! Y and g : Y ! Z be contin-
uous functions. Then

g � f : X ! Z is a continuous function.

(b) Let (X, EX), (Y, EY ) and (Z, EZ) be uniform spaces and let f : X ! Y and g : Y ! Z be uniformly
continuous functions. Then

g � f : X ! Z is a uniformly continuous function.
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Proof. (a) To show: If V 2 TZ then (g � f)�1(V ) 2 TX .
Assume V 2 TZ .
Since g is continuous then g

�1(V ) 2 TY .
Since f is continuous then f

�1(g�1(V )) 2 TX .
So

f
�1(g�1(V )) = {x 2 X | f(x) 2 g

�1(V )}

= {x 2 X | g(f(x)) 2 V }

= {x 2 X | (g � f)(x)) 2 V }

= (g � f)�1(V ) is an element of TX .

So g � f is continuous.

(b) To show: If V 2 EZ then ((g � f)⇥ (g � f))�1(V ) 2 EX .
Assume V 2 EZ .
Since g is uniformly continuous then (g ⇥ g)�1(V ) 2 EY .
Since f is uniformly continuous then (f ⇥ f)�1((g ⇥ g)�1(V )) 2 EX .
So

(f ⇥ f)�1((g ⇥ g)�1(V )) = {(x1, x2) 2 X ⇥X | f(x1), f(x2)) 2 (g ⇥ g)�1(V )}

= {(x1, x2) 2 X ⇥X | (g(f(x1)), g(f(x2))) 2 V }

= {(x1, x2) 2 X ⇥X | ((g � f)(x1), (g � f)(x2)) 2 V }

= {(x1, x2) 2 X ⇥X | ((g � f)⇥ (g � f))(x1, x2)) 2 V }

= ((g � f)⇥ (g � f))�1(V ) is an element of EX .

So g � f is uniformly continuous.

6.9 Uniformly continuous functions are continuous

Proposition 6.8. Let (X,XX) and (Y,XY ) be uniform spaces. Let TX be the uniform space topology
on (X,XX) and let TY be the uniform space topology on (Y,XY ).

If f : X ! Y is uniformly continuous then f : X ! Y is continuous.

Proof. Assume f : X ! Y is uniformly continuous.

To show: f : X ! Y is continuous.
To show: If a 2 A then f : X ! Y is continuous at a.
Assume a 2 X.
To show: f is continuous at a.

To show: If V 2 N (f(a)) then f
�1(V ) 2 N (a).

Assume V 2 N (f(a)).

To show: f�1(V ) 2 N (a).

To show: There exists D 2 EX such that f�1(V ) ◆ BD(a).

Since V 2 N (f(a)) there exists C 2 EY such that V ◆ BC(f(a)).

Let D = (f ⇥ f)�1(C).
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To show: f�1(V ) ◆ BD(a).

To show: If y 2 BD(a) then y 2 f
�1(V ).

Assume y 2 BD(a).

Then (a, y) 2 D.

So (a, y) 2 (f ⇥ f)�1(C).

So (f(a), f(y)) 2 C.

So f(y) 2 BC(f(a)).

So f(y) 2 V .

So y 2 f
�1(V ).

So f
�1(V ) ◆ BD(a).

So f
�1(V ) 2 N (a).

So f is continuous at a.

So f is continuous.

6.10 epsilon-delta characterization of continuity and uniform continuity

Proposition 6.9. Let (X, dX) and (Y, dY ) be metric spaces and let f : X ! Y be a function.

(a) The function f : X ! Y is continuous if and only if f satisfies

if ✏ 2 E and a 2 X then there exists � 2 E such that
if x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.

(b) The function f : X ! Y is uniformly continuous if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if a, x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.

Proof. (a) ): Assume f : X ! Y is continuous.

To show: If ✏ 2 E and a 2 X then there exists � 2 E such that if x 2 X and dX(a, x) < � then
dY (f(a), f(x)) < ✏.
Assume ✏ 2 E and a 2 X.
To show: There exists � 2 E such that if x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.
Since f is continuous and B✏(f(a)) is open in Y then f

�1(B✏(f(a))) is open in X.
Using that f�1(B✏(f(a))) is open in X and a 2 f

�1(B✏(f(a))),

let � 2 E such that B�(a) ✓ f
�1(B✏(f(a))).

To show: If x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.
Assume x 2 X and dX(a, x) < �.
To show: dY (f(a), f(x)) < ✏.
Since x 2 B�(a) and B�(a) ✓ f

�1(B✏(f(a))) then

f(x) 2 B✏(f(a)).

So dY (f(a), f(x)) < ✏.

(a) (: Assume: If ✏ 2 E and a 2 X then there exists � 2 E such that if x 2 X and dX(a, x) < � then
dY (f(a), f(x)) < ✏.
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To show: f : X ! Y is continuous.

Let TX be the metric space topology for (X, dX).
Let TY be the metric space topology for (Y, dY ).

To show: If V 2 TY then f
�1(V ) 2 TX .

Assume V 2 TY .
To show: f�1(V ) is open in X.
To show: If a 2 f

�1(V ) then a is an interior point of f�1(V ).
Assume a 2 f

�1(V ).
Then f(a) 2 V and, since V is open in Y ,

there exists ✏ 2 E such that B✏(f(a)) ✓ V .

To show: a is an interior point of f�1(V ).
To show: There exists � 2 E such that B�(a) ✓ f

�1(V ).
We know there exists � 2 E such that ‘if x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏’.
Let � = �.
To show: B�(a) ✓ f

�1(V ).
Since � satisfies ‘if x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏’,

then f(B�(a)) = f(B�(a)) ✓ B✏(f(a)).

Since B✏(f(a)) ✓ V then B�(a) ✓ f
�1(V ).

So a is an interior point of f�1(V ).
So f

�1(V ) is open in X.
So f : X ! Y is continuous.

(b) ): Assume f : X ! Y is uniformly continuous.

To show: If ✏ 2 E then there exists � 2 E such that if a, x 2 X and dX(a, x) < � then
dY (f(a), f(x)) < ✏.

Let EX be the metric space uniformity for (X, dX).
Let EY be the metric space uniformity for (Y, dY ).

Assume ✏ 2 E.
To show: There exists � 2 E such that if a, x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.
Since f is uniformly continuous and B✏ 2 EY then (f ⇥ f)�1(B✏) 2 EX .
Since (f ⇥ f)�1(B✏) 2 EX , then

there exists � 2 E such that B� ✓ (f ⇥ f)�1(B✏).

Let � = �.
To show: If a, x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏.
Assume a, x 2 X and dX(a, x) < �.
To show: dY (f(a), f(x)) < ✏.
Since dX(a, x) < � = �

then (a, x) 2 B� ✓ (f ⇥ f)�1(B✏).

So (f(a), f(x)) 2 B✏.
So dY (f(a), f(x)) < ✏.
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(b) (: Assume: If ✏ 2 E then there exists � 2 E such that if a, x 2 X and dX(a, x) < � then
dY (f(a), f(x)) < ✏.

To show: f : X ! Y is uniformly continuous.

Let EX be the metric space uniformity for (X, dX).
Let EY be the metric space uniformity for (Y, dY ).

To show: If E 2 EY then (f ⇥ f)�1(E) 2 EX .
Assume E 2 EY .
To show: (f ⇥ f)�1(E) 2 EX .
To show: There exists � 2 E such that B� ✓ (f ⇥ f)�1(E).
Since E 2 EY

there exists ✏ 2 E such that B✏ ✓ E.

So there exists � 2 E such that

if a, x 2 X and dX(a, x) < � then dY (f(a), f(x)) < ✏. (*)

Let � = �.
To show: B� ✓ (f ⇥ f)�1(E).
Since � satisfies (*), then if (a, x) 2 B� = B� then (f(a), f(x)) 2 B✏.
So (f ⇥ f)(B�) ✓ B✏ ✓ E.
So B� ✓ (f ⇥ f)�1(E).
So (f ⇥ f)�1(E) 2 EX .
So f : X ! Y is uniformly continuous.

Proposition 6.10. Let (X, EX) and (Y, EY ) be uniform spaces and let f : X ! Y be a function.

(a) The function f : X ! Y is continuous if and only if f satisfies

if E 2 EY and a 2 X then there exists D 2 EX such that
if x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.

(b) The function f : X ! Y is uniformly continuous if and only if f satisfies

if E 2 EY then there exists D 2 EX such that
if a, x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.

Proof. (a) ): Assume f : X ! Y is continuous.

To show: If E 2 EY and a 2 X then there exists D 2 EX such that if x 2 X and (a, x) 2 D then
(f(a), f(x)) 2 E.
Assume E 2 EY and a 2 X.
To show: There exists D 2 EX such that if x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.
Since f is continuous and BE(f(a)) is open in Y then f

�1(BE(f(a))) is open in X.
Using that f�1(BE(f(a))) is open in X and a 2 f

�1(BE(f(a))),

let D 2 EX such that BD(a) ✓ f
�1(BE(f(a))).

To show: If x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.
Assume x 2 X and (a, x) 2 D.
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To show: (f(a), f(x)) 2 E.
Since x 2 BD(a) and BD(a) ✓ f

�1(BE(f(a))) then f(x) 2 BE(f(a)).
So (f(a), f(x)) 2 E.

(a) (: Assume: If E 2 EY and a 2 X then there exists D 2 EX such that if x 2 X and (a, x) 2 D

then (f(a), f(x)) 2 E.

To show: f : X ! Y is continuous.

Let TX be the uniform space topology for (X, EX).
Let TY be the uniform space topology for (Y, EY ).

To show: If V 2 TY then f
�1(V ) 2 TX .

Assume V 2 TY .
To show: f�1(V ) is open in X.
To show: If a 2 f

�1(V ) then a is an interior point of f�1(V ).
Assume a 2 f

�1(V ).
Then f(a) 2 V and, since V is open in Y ,

there exists E 2 EY such that BE(f(a)) ✓ V .

To show: a is an interior point of f�1(V ).
To show: There exists G 2 EX such that BG(a) ✓ f

�1(V ).
We know there exists D 2 EX such that ‘if x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E’.
Let G = D.
To show: BG(a) ✓ f

�1(V ).
Since D satisfies ‘if x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E’,

then f(BG(a)) = f(BD(a)) ✓ BE(f(a)).

Since BE(f(a)) ✓ V then BG(a) ✓ f
�1(V ).

So a is an interior point of f�1(V ).
So f

�1(V ) is open in X.
So f : X ! Y is continuous.
So f : X ! Y is continuous.

(b) ): Assume f : X ! Y is uniformly continuous.

To show: If E 2 EY then there exists D 2 EX such that if a, x 2 X and (a, x) 2 D then
(f(a), f(x)) 2 E.
Assume E 2 EY .
To show: There exists D 2 EX such that if a, x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.
Since f is uniformly continuous and E 2 EY then (f ⇥ f)�1(E) 2 EX .
Since (f ⇥ f)�1(B✏) 2 EX , then

there exists G 2 EX such that G ✓ (f ⇥ f)�1(E).

Let D = G.
To show: If a, x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E.
Assume a, x 2 X and (a, x) 2 D.
To show: (f(a), f(x)) 2 E.

91



MAST30026 Resources, Arun Ram, July 19, 2022

Since (a, x) 2 D = G

then (a, x) 2 G ✓ (f ⇥ f)�1(E).

So (f(a), f(x)) 2 E.
So dY (f(a), f(x)) 2 E.

(b) (: Assume: If E 2 EY then there exists D 2 EX such that if a, x 2 X and (a, x) 2 D then
(f(a), f(x)) 2 E.

To show: f : X ! Y is uniformly continuous.
To show: If E 2 EY then (f ⇥ f)�1(E) 2 EX .
Assume E 2 EY .
To show: (f ⇥ f)�1(E) 2 EX .
To show: There exists G 2 EX such that G ✓ (f ⇥ f)�1(E).
Since E 2 EY there exists D 2 EX such that

if a, x 2 X and (a, x) 2 D then (f(a), f(x)) 2 E. (*)

Let G = D.
To show: B� ✓ (f ⇥ f)�1(E).
Since D satisfies (*), then if (a, x) 2 D = G then (f(a), f(x)) 2 E.
So (f ⇥ f)(G ✓ E.
So G ✓ (f ⇥ f)�1(E).
So (f ⇥ f)�1(E) 2 EX .
So f : X ! Y is uniformly continuous.

6.10.1 Making metric spaces into uniform spaces

Proposition 6.11. Let (X, d) be a metric space and let Ed be the metric space uniformity, as defined
in (??). Then (X, Ed) is a uniform space.

Proof. To show: E is a uniformity.
To show: (a) If E 2 E then E ◆ �(X).

(b) If E 2 E and D ✓ X ⇥X and D ◆ E then D 2 E .
(c) If E 2 E then �(E) 2 E .
(d) If E1, . . . , E` 2 E then E1 \ · · · \ E` 2 E .
(e) If E 2 E then there exists D 2 E such that D ./ D ✓ E.

(a) Assume E 2 E .
To show: E ◆ �(X).
Since there exists ✏ 2 E with E ◆ B✏ and

B✏ = {(x, y) 2 X ⇥X | d(x, y) < ✏} ◆ {(x, y) 2 X ⇥X | d(x, y) = 0} ◆ �(X),

then E ◆ B✏ ◆ �(X).
(b) Assume E 2 E and D ✓ X ⇥X and D ◆ E.

To show: D 2 E .
Since E 2 E there exists ✏ 2 E such that E ◆ B✏.
So D ◆ E ◆ B✏.
So there exists ✏ 2 E such that D ◆ B✏.
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So D 2 E .
(c) Assume E 2 E .

To show: �(E) 2 E .
Let ✏ 2 E such that V ◆ B✏.
To show: �(E) ◆ B✏.

�(V ) = {(y, x) | (x, y) 2 E} ◆ {(y, x) | (x, y) 2 B✏} = {(y, x) | d(x, y) < ✏} = B✏.

So there exists ✏ 2 E such that �(E) ◆ B✏.
So �(E) 2 E .

(d) Assume ` 2 Z>0 and E1, . . . , E` 2 E .
To show: E1 \ · · · \ E` 2 E .
To show: THere exists ✏ 2 E such that E1 \ · · · \ E` ◆ B✏.
Let

✏1 2 E such that E1 ◆ B✏1 ,
✏2 2 E such that E1 ◆ B✏2 , . . .
✏` 2 E such that E1 ◆ B✏`

.

Let ✏ = min{✏1, . . . , ✏`}.
To show: E1 \ · · · \ E` ◆ B✏.

E1 \ · · · \ E` ◆ B✏1 \ · · · \B✏`
= B✏.

So E1 \ · · · \ E` 2 E .

(e) Assume E 2 E .
To show: There exists D 2 E such that D ./ D ✓ E.
Let ✏ 2 E such that E ◆ B✏.
Let D = B✏/2.
To show: D ./ D ✓ E.
Since D ◆ B✏/2 then D 2 E and

D ./ D = B✏/2 ./ B✏/2 ✓ B✏,

since d(x, y)  d(x, z) + d(z, y) < ✏ if (x, y) 2 B✏/2 ./ B✏/2.
So D ./ D ✓ B✏ ✓ E.

6.10.2 Uniform spaces come from metric spaces

Proposition 6.12. Let (X, E) be a uniform space.

(a) Let E 2 E and let d,XE ,XU and Xd be as defined in (6.2) and (6.3). Then

XE is a uniformity on X, d is a metric on X, and XE = XU = Xd.

(b) E = sup{XE | E 2 E}.
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Proof. Note that E1, E2, . . . 2 E and U1, U2, . . . 2 E such that

E1 ✓ E, �(En) = En, and En+1 ✓ En+1 ./ En+1 ✓ En, and (6.4)

U1 ✓ E1, �(Un) = Un, and Un+1 ✓ Un+1 ./ Un+1 ./ Un+1 ✓ (Un \ En). (6.5)

To show: (a) d is a metric.
(b) If x, y 2 X then d(x, y)  g(x, y).
(c) If x, y 2 X then d(x, y) � 1

2g(x, y).
(d) XU = Xd.
(e) XE = XU .
(f) E = sup{XE | E 2 E}.

(a) To show: d is a metric.
To show: (aa) If x 2 X then d(x, x) = 0.

(ab) If x, y 2 X then d(x, y) = d(y, x).
(ac) If x, y, z 2 X then d(x, y)  d(x, z) + d(z, y).

(aa) Assume x 2 X.
To show: d(x, x) = 0.

d(x, x) = inf{g(x, z1) + · · ·+ g(zp�1, x) | p 2 Z>0}  g(x, x) = 0,

since (x, x) 2 Un for n 2 Z>0.
(ab) Assume x, y 2 X.

If a, b 2 X then g(a, b) = g(b, a) since �(Un) = Un, and so

d(x, y) = inf{g(x, z1) + · · ·+ g(zp�1, y) | p 2 Z>0}

= inf{g(y, zp�1) + · · ·+ g(z1, x) | p 2 Z>0} = d(y, x).

(ac) Assume x, y, z 2 X.
To show: d(x, y)  d(x, z) + d(z, y).

d(x, y) = inf{g(x, z1) + · · ·+ g(zp�1, y) | p 2 Z>0}

 inf{g(x, v1) + · · ·+ g(vk�1, z) + g(z, w1) + · · ·+ g(wr�1, y) | k, r 2 Z>0}

= inf{g(x, v1) + · · ·+ g(vk�1, z) | k 2 Z>0}+ inf{g(z, w1) + · · ·+ g(wr�1, y) | r 2 Z>0}

= d(x, z) + d(z, y).

(b) To show: d(x, y)  g(x, y).
Since g(x, y) 2 {g(x, z1) + · · ·+ g(zp�1, y) | p 2 Z>0} then d(x, y)  g(x, y).

(c) To show: d(x, y) � 1
2g(x, y).

To show: If p 2 Z>0 and z1, . . . , zp�1 2 X then
�
g(x, z1) + · · · g(zp�1, y)

�
�

1
2g(x, y).

By induction on p.

The base case p = 1: g(z0, z1) = g(x, y) � 1
2g(x, y).

Induction step:
Assume p 2 Z>1.
Case A: If

�
g(x, z1) + · · · g(zp�1, zp)

�
�

1
2 then

g(x, z1) + · · · g(zp�1, zp) �
1
2 �

1
2 · 1 �

1
2g(x, y).
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Case B: Assume
�
g(x, z1) + · · · g(zp�1, zp)

�
<

1
2 .

Write

�
g(z0, z1) + · · ·+ g(zh�1, zh)

�
+ g(zh, zh+1) +

�
g(zh+1, zh+2) + · · ·+ g(zp�1, zp)

�

with h 2 {1, . . . , p� 1} (CAN p BE 2????) such that

(g(z0, z1) + · · ·+ g(zh�1, zh)) 
1
2

�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
, and

(g(z0, z1) + · · ·+ g(zh�1, zh)) + g(zh, zh+1) >
1
2

�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
so that

�
g(zh+1, zh+2) + · · ·+ g(zp�1, zp)

�


1
2

�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
,

By induction,

1
2g(x, zh)  g(z0, z1) + · · ·+ g(zh�1, zh) and

1
2g(zh+1, y)  g(zh+1, zh+2) + · · ·+ g(zp�1, zp).

So

g(zh, zh+1) 
�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
,

1
2g(x, zh)  g(z0, z1) + · · ·+ g(zh�1, zh) 

1
2(g(z0, z1) + · · ·+ g(zp�1, zp))

1
2g(zh+1, y) 

�
g(zh+1, zh+2) + · · ·+ g(zp�1, zp)

�


1
2(g(z0, z1) + · · ·+ g(zp�1, zp))

Let `1, `2, `3 2 Z>0 such that g(x, zh) = 2�`1 , g(zh, zh+1) = 2�`2 , g(zh+1, y) = 2�`3 .
Then

2�`1 = g(zh, zh+1)  (g(z0, z1) + · · ·+ g(zp�1, zp)),

2�`2 = g(x, zh)  (g(z0, z1) + · · ·+ g(zp�1, zp))

2�`3 = g(zh+1, y)  (g(z0, z1) + · · ·+ g(zp�1, zp))

Let k 2 Z>0 be minimal such that 2�k


�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
<

1
2 .

Since 2�k


�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
<

1
2 then

`1 � k > 1 and `2 � k > 1 and `3 � k > 1.

So (x, zh) 2 Uk, (zh+1, y) 2 Uk and (zh, zh+1) 2 Uk.
Using the third property in (6.5), (x, y) 2 Uk ./ Uk ./ Uk ✓ Uk�1.
So g(x, y)  2�(k�1) = 2 · 2�k

 2
�
g(z0, z1) + · · ·+ g(zp�1, zp)

�
.

So g(x, y)  2d(x, y).

(d) To show: XE = XU .
To show: (da) XE ✓ XU .

(db) XU ✓ XE .

(da) Assume D 2 XE .
Let n 2 Z>0 such that D ◆ En.
Using the thrid property in (6.5), Since Un+1 ✓ Un+1 ./ Un+1 ./ Un+1 ✓ Un \ En ✓ En ✓ D.
So D 2 XU .
So XE ✓ XU .

(db) Assume D 2 XU .
Let n 2 Z>0 such that Un ✓ D.
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By the ??? property in (6.5), Un ✓ En�1 if n > 1.
By definition of Uk, then Uk 2 XE . REALLY????
So XU ✓ XE .

So XU = XE .

(e) To show: Xd = XU .
To show: (ea) Xd ✓ XU .

(eb) XU ✓ Xd.

(ea) If (x, y) 2 Uk then d(x, y)  g(x, y)  2�k.
So (x, y) 2 B2�k .
So Uk ✓ B2�k .
So B2�k 2 XU .
So Xd ✓ XU .

(eb) Using (c), if (x, y) 2 B2�k then g(x, y)  2d(x, y)  2�(k�1).
So (x, y) 2 Uk�1.
So B2�k ✓ Uk�1.
So Uk�1 2 Xd.
So XU ✓ Xd.

So XU = Xd.

(f) To show: E = sup{XE | E 2 E}.
To show: (fa) E is an upper bound of {XE | E 2 E}.

(fb) If Y is a uniformity on X and Y is an upper bound of {XE | E 2 E} then Y ◆ E .

(fa) To show: E ◆ XE .
To show: If D 2 XE then D 2 E .
Assume D 2 XE .
To show: There exists k 2 Z>0 such that D ◆ Ek.
Let k 2 Z>0 such that D ◆ Ek.
Using the upper ideal condition on E ,
since Ek 2 E and D ✓ X ⇥X and D ◆ Ek then D 2 E .

So XE ✓ E .
(fb) To show: If Y is an upper bound of {XE | E 2 E} then Y ◆ E .

Assume Y is an upper bound of {XE | E 2 E}.
To show: Y ◆ E .
We know: If E 2 E then Y ◆ XE .
To show: If E 2 E then E 2 Y.
Assume E 2 E .
To show: E ✓ Y.
Since E1 = E and E1 2 XE then E 2 XE .
Since XE ✓ Y then E 2 Y.
So E ✓ Y.

So E is a least upper bound of {XE | E 2 E}.
So E = sup{XE | E 2 E}.
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