3.3 Tutorial 1 NEW MAST30005 Semester 1, 2024: Last week's theorems

Last week we covered the following theorems. Write careful proofs of each.

Proposition 3.1. Let \mathbb{K} be a field and let H be a subgroup of $Aut(\mathbb{K})$. Then \mathbb{K}^H is a subfield of \mathbb{K} .

Theorem 3.2. Let $\varphi \colon A \to R$ be a ring homomorphism. Let $K = \ker(\varphi)$. Then the function

$$\frac{A}{\ker(\varphi)} \to \operatorname{im}(\varphi) \qquad \text{is a ring isomorphism.} \\ a+K \mapsto \varphi(a)$$

Proposition 3.3. Let \mathbb{F} be a subfield of a field \mathbb{K} and let $\alpha \in \mathbb{K}$. Let $\mathbb{F}[x] \xrightarrow{\operatorname{ev}_{\alpha}} \mathbb{K}$ be the evaluation homomorphism. Let $\mathbb{F}(\alpha)$ be the smallest subfield of \mathbb{K} containing \mathbb{F} and α . Let

$$\mathbb{F}[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha}) \qquad and \ let \quad m_{\alpha,\mathbb{F}}(x) = c_0 + c_1 x + \cdots + c_{\ell-1} x^{\ell-1} + x^{\ell} \quad \in \mathbb{F}[x]$$

be such that

$$\ker(\operatorname{ev}_{\alpha}) = (m_{\alpha,\mathbb{F}}(x)), \qquad \text{where} \quad (m_{\alpha,\mathbb{F}}(x)) = m_{\alpha,\mathbb{F}}(x)\mathbb{F}[x] = \{m_{\alpha,\mathbb{F}}(x)g \mid g \in \mathbb{F}[x]\}.$$

Then

$$\mathbb{F}(\alpha) = \mathbb{F}[\alpha] \cong \frac{\mathbb{F}[x]}{(m_{\alpha,\mathbb{F}}(x))},$$

and, as a vector space over \mathbb{F} ,

$$\mathbb{F}(\alpha)$$
 has \mathbb{F} -basis $\{1, \alpha, \alpha^2, \dots, \alpha^{\ell-1}\}$

Theorem 3.4. Let \mathbb{E} be a subfield of \mathbb{K} and assume that there exists $f \in \mathbb{E}[x]$ such that \mathbb{K} is the splitting field of f over \mathbb{E} . Then the map

$$\{ \begin{array}{ccc} \text{field inclusions } \mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{K} \} & \longleftrightarrow & \{ \begin{array}{ccc} \text{group inclusions } \operatorname{Aut}_{\mathbb{E}}(\mathbb{K}) \supseteq H \supseteq \{ 1 \} \} \\ & \mathbb{F} & \longmapsto & \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) \\ & \mathbb{K}^{H} & \longleftarrow & H \end{array}$$

is an isomorphism of posets.

Some steps for the proof of Theorem 3.4

Let \mathbbm{K} be a field.

• Let \mathbb{F} be a subfield of \mathbb{K} . The **Galois group of** \mathbb{K} over \mathbb{F} is

$$\operatorname{Gal}(\mathbb{F}) = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) = \{ \sigma \in \operatorname{Aut}(\mathbb{K}) \mid \text{if } e \in \mathbb{F} \text{ then } \sigma(e) = e \}.$$

• Let H be a subgroup of $Aut(\mathbb{K})$. The fixed field of H is

$$\operatorname{Fix}(H) = \mathbb{K}^{H} = \{ e \in \mathbb{K} \mid \text{if } \sigma \in H \text{ then } \sigma(e) = e \}.$$

HW: Show that $\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$ is a subgroup of $\operatorname{Aut}(\mathbb{K})$.

HW: Show that \mathbb{K}^H is a subfield of \mathbb{K} .

HW: Let $\mathbb{F} \subseteq \mathbb{K}$ be a subfield of \mathbb{K} . Show that $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}) \supseteq \mathbb{F}$.

HW: Let *H* be a subgroup of $Aut(\mathbb{K})$. Show that $Gal(Fix(H)) \subseteq H$.

HW: Let \mathbb{F} and \mathbb{G} be subfields of \mathbb{K} and assume that $\mathbb{F} \subseteq \mathbb{G}$. Show that $\operatorname{Gal}(\mathbb{G}) \subseteq \operatorname{Gal}(\mathbb{F})$.

HW: Let G and H be subgroups of Aut(\mathbb{K}) and assume that $G \subseteq H$. Show that Fix(G) \supseteq Fix(H).

HW: Let H be a subgroup of $Aut(\mathbb{K})$). Show that Fix(Gal(Fix(H))) = Fix(H).

HW: Let \mathbb{F} be a subfield of \mathbb{K} . Show that $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) = \operatorname{Gal}(\mathbb{F})$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and let $\sigma \in \operatorname{Aut}(\mathbb{E})$. Show that $\operatorname{Gal}(\sigma(\mathbb{F})) = \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$ (subgroups of $\operatorname{Aut}(\mathbb{K})$).

HW: Let *H* be a subgroup of Aut(\mathbb{K}) and let $\sigma \in Aut(\mathbb{E})$. Show that $Fix(\sigma H \sigma^{-1}) = \sigma(Fix(H))$ (subfields of \mathbb{K}).

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is the splitting field of a polynomial $f(x) \in \mathbb{F}[x]$ over \mathbb{F} and that f(x) factors as

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_\ell), \quad \text{with } \alpha_1, \dots, \alpha_\ell \in \mathbb{K}.$$

Show that $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_\ell)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_\ell)$. Show that there exists $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Show that there exists $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$m_{\gamma,\mathbb{F}}(x) = \prod_{\beta \in G\gamma} (x - \beta)$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$\deg(m_{\gamma,\mathbb{F}}(x)) = |G|.$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$\dim_{\mathbb{F}}(\mathbb{K}) = |G|.$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Let $G\gamma = \{g\gamma \mid g \in G\}$. Show that

$$\begin{array}{rccc} G & \to & G\gamma \\ g & \mapsto & g\gamma \end{array}$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Show that $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F})) = \mathbb{F}$.

HW: Let *H* be a finite subgroup of $Aut(\mathbb{K})$. Show that $\mathbb{K} \supseteq \mathbb{K}^H$ is a Galois extension.

HW: Let *H* be a finite subgroup of $Aut(\mathbb{K})$. Show that Gal(Fix(H)) = H.