1.6 Tutorial 4 MAST30005 Semester I, 2024: Generators and relations

1. Show that the symmetric group S_{n} is presented by generators s_{1}, \ldots, s_{n-1} and relations

$$
s_{j}^{2}=1, \quad s_{k} s_{\ell}=s_{\ell} s_{k}, \quad s_{i}, s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

for $j \in\{1, \ldots, n-1\}, j, k \in\{1, \ldots n-1$ with $k \notin\{k+1, k-1\}$ and $i \in\{1, \ldots, n-2\}$.
2. Show that the dihedral group D_{n} is presented by generators s, r with relations

$$
s^{2}=1, \quad r^{n}=1, \quad s r=r^{-1} s
$$

3. Show that the cyclic group μ_{n} is presented by a single generator ζ with relation $\zeta^{n}=1$.
4. Show that the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is presented by a single generator 1 with relation $n=0$.
5. Show that the dihedral group D_{n} is presented by generators s_{1}, s_{2} with

$$
s_{1}^{2}=1, \quad s_{2}^{2}=1, \quad\left(s_{1} s_{2}\right)^{n}=1
$$

6. Carefully define permutation matrix. Show that the symmetric group S_{n} is (isomorphic to) the group of $n \times n$ permutation matrices.
7. Carefully define cyclic matrix. Show that the cyclic group μ_{n} is (isomorphic to) the group of $n \times n$ cyclic matrices.
8. Carefully define dihedral matrices. Show that the dihedral group D_{n} is (isomorphic to) the group of $n \times n$ dihedral matrices.
9. Show that the symmetric group S_{n} is (isomorphic to) $\operatorname{Aut}(\{1, \ldots, n\})$.
10. Determine the subgroup lattice of $\mathbb{Z} / 2 \mathbb{Z}$.
11. Determine the subgroup lattice of $\mathbb{Z} / 3 \mathbb{Z}$.
12. Determine the subgroup lattice of $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
13. Determine the subgroup lattice of $\mathbb{Z} / 5 \mathbb{Z}$.
14. Show that $\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
15. Determine the subgroup lattice of $\mathbb{Z} / 6 \mathbb{Z}$.
16. Show that $S_{3} \cong D_{3}$.
17. Carefully define the quaternion group and determine its subgroup lattice.
18. Show that \mathbb{C} is the \mathbb{R}-algebra presented by a single generator i and the relation $i^{2}=1$.
19. Show that $\mathbb{R}[x]$ is the \mathbb{R}-algebra presented by a single generator x (and no relations).
20. Show that \mathbb{Z} is the group generated by single generator 1 (and no relations).
21. Show that $\mathbb{R}\left[x, x^{-1}\right]$ is the \mathbb{R}-algebra presented by a generators x, y with relation $x y=1$.
22. Show that \mathbb{F}_{4} is the \mathbb{F}_{2}-algebra presented by a single generator τ with relation $\tau^{2}+\tau+1=0$.
