1.6 Tutorial 4 MAST30005 Semester I, 2024: Generators and relations

1. Show that the symmetric group S_n is presented by generators s_1, \ldots, s_{n-1} and relations

$$s_j^2 = 1, \qquad s_k s_\ell = s_\ell s_k, \qquad s_i, s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$

for $j \in \{1, \dots, n-1\}$, $j, k \in \{1, \dots, n-1 \text{ with } k \notin \{k+1, k-1\} \text{ and } i \in \{1, \dots, n-2\}$.

2. Show that the dihedral group D_n is presented by generators s, r with relations

$$s^2 = 1, \qquad r^n = 1, \qquad sr = r^{-1}s.$$

- 3. Show that the cyclic group μ_n is presented by a single generator ζ with relation $\zeta^n = 1$.
- 4. Show that the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is presented by a single generator 1 with relation n = 0.
- 5. Show that the dihedral group D_n is presented by generators s_1, s_2 with

$$s_1^2 = 1, \qquad s_2^2 = 1, \qquad (s_1 s_2)^n = 1.$$

- 6. Carefully define permutation matrix. Show that the symmetric group S_n is (isomorphic to) the group of $n \times n$ permutation matrices.
- 7. Carefully define cyclic matrix. Show that the cyclic group μ_n is (isomorphic to) the group of $n \times n$ cyclic matrices.
- 8. Carefully define dihedral matrices. Show that the dihedral group D_n is (isomorphic to) the group of $n \times n$ dihedral matrices.
- 9. Show that the symmetric group S_n is (isomorphic to) Aut($\{1, \ldots, n\}$).
- 10. Determine the subgroup lattice of $\mathbb{Z}/2\mathbb{Z}$.
- 11. Determine the subgroup lattice of $\mathbb{Z}/3\mathbb{Z}$.
- 12. Determine the subgroup lattice of $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 13. Determine the subgroup lattice of $\mathbb{Z}/5\mathbb{Z}$.
- 14. Show that $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 15. Determine the subgroup lattice of $\mathbb{Z}/6\mathbb{Z}$.
- 16. Show that $S_3 \cong D_3$.
- 17. Carefully define the quaternion group and determine its subgroup lattice.
- 18. Show that \mathbb{C} is the \mathbb{R} -algebra presented by a single generator *i* and the relation $i^2 = 1$.
- 19. Show that $\mathbb{R}[x]$ is the \mathbb{R} -algebra presented by a single generator x (and no relations).
- 20. Show that \mathbb{Z} is the group generated by single generator 1 (and no relations).
- 21. Show that $\mathbb{R}[x, x^{-1}]$ is the \mathbb{R} -algebra presented by a generators x, y with relation xy = 1.
- 22. Show that \mathbb{F}_4 is the \mathbb{F}_2 -algebra presented by a single generator τ with relation $\tau^2 + \tau + 1 = 0$.