Sheet 1

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

 $\frac{e}{f}$.

Last updates: 25 July 2009

1. Numbers

- 1. Define the following sets and give examples of elements of each:
 - (a) the set of positive integers,
 - (b) the set of nonnegative integers,
 - (c) the set of integers,
 - (d) the set of rational numbers,
 - (e) the set of real numbers,
 - (f) the set of complex numbers,
 - (g) the set of algebraic numbers.

2. Let
$$\frac{a}{b}$$
, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$.
(a) Define $\frac{a}{b} + \frac{c}{d}$ and $\frac{a}{b} \frac{c}{d}$.
(b) Show that $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) +$
(c) Show that if $\frac{a}{b} + \frac{c}{d} = \frac{c}{d}$ then $\frac{a}{b} = \frac{0}{1}$.
(d) Show that if $\frac{a}{b} + \frac{c}{d} = \frac{0}{7}$ then $\frac{c}{d} = \frac{-a}{b}$.

- 3. Compute the decimal expansion of $\frac{3651}{342}$.
- 4. State and prove the Pythagorean Theorem.
- 5. Show that $\sqrt{2} \notin \mathbb{Q}$.
- 6. Graph $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Q} , \mathbb{R} , and $\overline{\mathbb{Q}}$, as subsets of \mathbb{C} .

- 7. State the fundamental theorem of algebra.
- 8. Compute and graph the following:
 - (a) $\frac{-15+i}{4+2i}$, (b) $(3-2i)^3$, (c) $\sqrt{2i}$, (d) $(27^{1/3})^4$,

(e)
$$27^{(4+1/3)}$$

9. Compute and graph the following:

(a)
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^3$$
,
(b) $(1+i)^n + (1-i)^n$, for $n \in \mathbb{Z}_{\geq 0}$

10. Let z = x + iy with $x, y \in \mathbb{R}$. Compute and graph the following:

(a)
$$\frac{1}{z}$$
,
(b) z^4 ,
(c) $\left| \frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \right|$.

11. Show that the conjugate of $\frac{z}{z^2 + 1}$ is equal to $\frac{\overline{z}}{\overline{z^2 + 1}}$.

- 12. Define the following and give examples:
 - (a) set,
 - (b) subset,
 - (c) equal sets,
 - (d) union,
 - (e) intersection,
 - (f) product of sets,
 - (g) emptyset,
 - (h) function,
 - (i) well defined function,
 - (j) equal functions,
 - (k) injective,
 - (l) surjective,
 - (m) bijective.
- 13. Explain why \sqrt{x} is not a function.
- 14. Define the following:
 - (a) composition of functions,
 - (b) identity map on S,

- (c) inverse function,
- (d) \sqrt{x} ,
- (e) $x^{1/7}$,
- (f) $\log(x)$,
- (g) $\sin^{-1} x$,
- (h) $\tan^{-1} x$,
- (i) $\cosh^{-1} x$,

15. Define the following and give examples:

- (a) monoid without identity,
- (b) monoid,
- (c) group,
- (d) commutative monoid,
- (e) abelian group,
- (f) ring,
- (g) commutative ring,
- (h) field,
- (i) division ring.

16. Define the following and give examples:

- (a) operation,
- (b) commutative,
- (c) associative.
- 17. Give an example of an operation that is not commutative and not associative.
- 18. Give an example of an operation that is associative but not commutative.
- 19. Define the following sets and give examples of elements of each:
 - (a) $\mathbb{Q}[x]$,
 - (b) Q[[*x*]],
 - (c) $\mathbb{Q}(x)$,
 - (d) $\mathbb{Q}((x))$.

20. Let $D : \mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$ be a function such that

(D1) If $f, g \in \mathbb{Q}[x]$ then D(f+g) = D(f) + D(g), (D2) If $c \in \mathbb{Q}$ and $f \in \mathbb{Q}[x]$ then D(cf) = cD(f),

- (D3) If $f, g \in \mathbb{Q}[x]$ then D(fg) = fD(g) + D(f)g and
- (D4) D(x) = 1.
- (a) Compute $D(x^n)$, for $n \in \mathbb{Z}_{\geq 0}$.
- (b) Let $f = c_0 + c_1 + c_2 + c_3 + c_4 + \dots$ Show that $c_k = \frac{1}{k!} (D^k f)|_{k=0}$.
- 21. Write the following as elements of $\mathbb{Q}[x]$:

(a)
$$\frac{1-x^n}{1-x}$$
,
(b) e^x
(c) $\sin x$
(d) $\sin(1+x)$,
(e) $\cos x$
(f) $\frac{1}{1-x}$,
(g) $(1+x)^7$,
(h) $(1+x)^{1/7}$.