620-295 Real Analysis with applications

Problem Sheet 2

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

Last updates: 10 August 2009

1. Groups and Monoids

- 1. Let *S* be a set with an associative operation with identity. Show that the identity is unique. (This tells us that any commutative monoid has only one heart.)
- 2. Let S be a set with an associative operation with identity. Let $s \in S$ and assume that s has an inverse in S. Show that the inverse of s is unique. (This tell us that any element of an abelian group has only one mate.)
- 3. Let S be a set with identity. Let $s \in S$ and assume that s has an inverse in S. Show that the inverse of the inverse of s is equal to s. (This tells us that -(-s) = s.)
- 4. Let *S* be an abelian group. Show that if a + c = b + c then a = b.
- 5. Let *S* be a ring. Show that if $s \in S$ then $s \cdot 0 = 0$.

2. The number systems \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C}

1. Prove that
$$\sum_{k=1}^{n} k = \frac{1}{2} n(n+1).$$

2. Prove that
$$\sum_{k=1}^{n} (2k-1) = n^2$$
.

3. Prove that
$$\sum_{k=1}^{n} \left(3k - 2 \right) = \frac{1}{2}n(3n - 1).$$

4. Prove that
$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1).$$

5. Prove that
$$\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$$

6. Prove that
$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$
.

7. Prove that
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
.

- 8. Define $a_1 = 0$, $a_{2k} = \frac{1}{2}a_{2k-1}$ and $a_{2k+1} = \frac{1}{2} + a_{2k}$. Show that $a_{2k} = \frac{1}{2} \left(\frac{1}{2}\right)^k$.
- 9. Prove that if $n \in \mathbb{Z}_{>0}$ then 3 is a factor of $n^3 n + 3$.
- 10. Prove that if $n \in \mathbb{Z}_{>0}$ then 9 is a factor of $10^{n+1} + 3 \cdot 10^n + 5$.
- 11. Prove that if $n \in \mathbb{Z}_{>0}$ then 4 is a factor of $5^n 1$.
- 12. Prove that if $n \in \mathbb{Z}_{>0}$ then x y is a factor of $x^n y^n$.
- 13. Give an example of $s \in \mathbb{Q}$ which has more than one representation as a fraction.
- 14. Show that $\sqrt{2} \notin \mathbb{Q}$.
- 15. Show that $\sqrt{3} \notin \mathbb{Q}$.
- 16. Show that $\sqrt{15} \notin \mathbb{Q}$.
- 17. Show that $2^{1/3} \notin \mathbb{Q}$.
- 18. Show that $11^{1/4} \notin \mathbb{Q}$.
- 19. Show that $16^{1/5} \notin \mathbb{Q}$.
- 20. Show that $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- 21. Give an example of $s \in \mathbb{R}$ which has more than one decimal expansion.

- 22. Compute the decimal expansion of π to 30 digits.
- 23. Compute the decimal expansion of 2π to 30 digits.
- 24. Compute the decimal expansion of π^2 to 30 digits.
- 25. Compute the decimal expansion of $-\pi$ to 30 digits.
- 26. Compute the decimal expansion of π^{-1} to 30 digits.
- 27. Show that .9999... = 1.00000....
- 28. Compute the decimal expansion of $\sqrt{2}$ to 30 digits.

29. Let z = x + yi with $x, y \in \mathbb{R}$. Show that $z^{-1} = \frac{1}{|z|^2}(x - yi)$.

3. Orders

- 1. Define the following and give an example for each:
 - (a) partial order,
 - (b) total order,
 - (c) order,
 - (d) ordered set,
 - (e) maximum,
 - (f) minimum,
 - (g) upper bound,
 - (h) lower bound,
 - (i) bounded above,
 - (j) bounded below,
 - (k) least upper bound,
 - (l) greatest lower bound,
 - (m) supremum,
 - (n) infimum,
 - (o) intervals.
- 2. An ordered set *S* has the *least upper bound property* if it satisfies: If $E \subseteq S, E \neq \emptyset$, and *E* is bounded above then sup(*E*) exists in *S*.
- 3. An ordered set S is *well ordered* if it satisfies: If $E \subseteq S$ then E has a minimal element.
- 4. An ordered set S is totally ordered if it satisfies:

If $x, y \in S$ then x < y or x < y.

- 5. An ordered set S is *a lattice* if it satisfies: If $x, y \in S$ then sup{x, y} and inf{x, y} exist.
- 6. Show that \mathbb{Q} does not have the least upper bound property.
- 7. Show that \mathbb{R} has the least upper bound property.
- 8. Which of $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Z} , \mathbb{C} have the least upper bound property?
- 9. Which of $\mathbb{Z}_{>0}$, $\mathbb{Z}_{>0}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are well ordered?
- 10. Which of $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are totally ordered?
- 11. Which of $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are lattices?
- 12. Let S be a set. Show that the set of subsets of S is partially ordered by inclusion.
- 13. Define the following and give examples of each:
 - (a) ordered monoid,
 - (a) ordered group,
 - (a) ordered ring,
 - (a) ordered field,

14. Let *S* be an ordered field. Prove the following:

- (a) If $a \in S$ and a > 0 then -a < 0.
- (b) If $a \in S$ and a > 0 then $a^{-1} > 0$.
- (c) If $a, b \in S$, a > 0 and b > 0 then ab > 0.

15. Let *S* be an ordered group and let $x \in G$. Define the *absolute value* of *x*.

4. Orders on \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C}

- 1. Define the order \geq on $\mathbb{Z}_{>0}$.
- 2. Define the order \geq on $\mathbb{Z}_{\geq 0}$.
- 3. Define the order \geq on \mathbb{Z} .
- 4. Define the order \geq on \mathbb{Q} .

- 5. Show that $\frac{a}{b} \leq \frac{c}{d}$ if and only if $abd^2 \leq cdb^2$.
- 6. Define the order \geq on \mathbb{R} .
- 7. Show that there is no order \geq on \mathbb{C} such that \mathbb{C} is a totally ordered field.
- 8. Show that if $x, y, z \in \mathbb{R}$ and $x \le y$ and $y \le z$ then $x \le z$.
- 9. Show that if $x, y \in \mathbb{R}$ and $x \le y$ and $y \le x$ then x = y.
- 10. Show that if $x, y, z \in \mathbb{R}$ and $x \le y$ then $x + z \le y + z$.
- 11. Show that if $x, y \in \mathbb{R}$ and $x \ge 0$ and $y \ge 0$ then $xy \ge 0$.
- 12. Show that if $x \in \mathbb{R} \{0\}$ then $x^2 > 0$.
- 13. Show that if $x, y \in \mathbb{R}$ and 0 < x < y then $y^{-1} < x^{-1}$.
- 14. (The Archimedean property of \mathbb{R}) Show that if $x, y \in \mathbb{R}$ and $x \in \mathbb{R}_{>0}$ then there exists $n \in \mathbb{Z}_{\geq 0}$ such that nx > y.
- 15. Show that the Archimedean property is equivalent to $\mathbb{Z}_{>0}$ is an unbounded subset of \mathbb{R} .
- 16. (Q is dense R) Show that if $x, y \in \mathbb{R}$ and x < y then there exists $p \in \mathbb{Q}$ such that x .
- 17. $(\mathbb{R} \mathbb{Q} \text{ is dense } \mathbb{R})$ Show that if $x, y \in \mathbb{R}$ and x < y then there exists $p \in \mathbb{R} \mathbb{Q}$ such that x .
- 18. If $x, y \in \mathbb{R}$ and x < y show that there exist infinitely many rational numbers between x and y as well as infinitely many irrational numbers.
- 19. Let $x \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{>0}$. Then there exists a unique $y \in \mathbb{R}_{>0}$ such that $y^n = x$.
- 20. Find the minimal $N \in \mathbb{Z}_{>0}$ such that $n < 2^n$ for all $n \ge N$.
- 21. Find the minimal $N \in \mathbb{Z}_{>0}$ such that $n! > 2^n$ for all $n \ge N$.
- 22. Find the minimal $N \in \mathbb{Z}_{>0}$ such that $2^n > 2n^3$ for all $n \ge N$.
- 23. For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a)
$$A = \{p \in \mathbb{Q} | p^2 < 2\},$$

(b) $B = \{p \in \mathbb{Q} | p^2 > 2\},$
(c) $E_1 = \{r \in \mathbb{Q} | r < 0\},$
(d) $E_2 = \{r \in \mathbb{Q} | r \le 0\},$
(e) $E = \{\frac{1}{n} | n \in \mathbb{Z}_{>0}\},$
(f) [0, 1),
(g) $\mathbb{Z}_{>0},$
(h) $\{x \in \mathbb{Q} | x \le 0 \text{ or } (x > 0 \text{ and } x^2 > 2)\},$
(i) $\mathbb{Z},$
(j) $[\sqrt{2}, 2],$
(k) $(\sqrt{2}, 2),$
(l) $\{x \in \mathbb{R} | x = \frac{(-1)^n}{n}, n \in \mathbb{Z}_{>0}\},$
(m) $\{\frac{1}{(|n|+1)^2} | n \in \mathbb{Z}\},$
(n) $\{n + \frac{1}{n} | n \in \mathbb{Z}_{>0}\},$
(o) $\{2^{-m} - 3^n | m, n \in \mathbb{Z}_{\geq 0}\},$
(p) $\{x \in \mathbb{R} | x^3 - 4x < 0\},$
(q) $\{1 + x^2 | x \in \mathbb{R}\},$

- 24. Let *S* be a nonempty subset of \mathbb{R} . Show that $x = \sup S$ if and only if
 - (a) x is an upper bound of S, and
 - (b) for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $y \in S$ such that $x \varepsilon < y \le x$.
- 25. State and prove a characterization of $\inf S$ analogous to the characterization of $\sup S$ in the previous problem.
- 26. Let $c \in \mathbb{R}$ and let *S* be a subset of \mathbb{R} . Show that if *S* is bounded then $c + S = \{c + s \mid s \in \mathbb{R} \}$ is bounded.
- 27. Let $c \in \mathbb{R}$ and let S be a subset of \mathbb{R} . Show that if S is bounded then $cS = \{cs \mid s \in \mathbb{R}\}$ is bounded.
- 28. Let $c \in \mathbb{R}$ and let *S* be a subset of \mathbb{R} . Show that $\sup(c + S) = c + \sup S$.
- 29. Let $c \in \mathbb{R}_{\geq 0}$ and let *S* be a subset of \mathbb{R} . Show that $\sup(cS) = c \sup S$.
- 30. Let $c \in \mathbb{R}$ and let *S* be a subset of \mathbb{R} . Show that $\inf(c + S) = c + \inf S$.
- 31. Let $c \in \mathbb{R}_{\leq 0}$ and let *S* be a subset of \mathbb{R} . Show that $\inf(cS) = c \inf S$.

5. Absolute value

- 1. Let $x \in \mathbb{R}$. Define |x|.
- 2. Let $x \in \mathbb{C}$. Define |x|.
- 3. Let $x \in \mathbb{R}$. Show that |x| = |x + 0i|.
- 4. Let $x \in \mathbb{R}$. Show that |-x| = |x|.
- 5. Let $x, y \in \mathbb{R}$. Show that $|x + y| \le |x| + |y|$.
- 6. Let $x, y \in \mathbb{C}$. Show that $|x + y| \le |x| + |y|$.
- 7. Let x, y, $z \in \mathbb{R}$. Show that $|x + y + z| \le |x| + |y| + |z|$.
- 8. Let *x*, *y*, *z* $\in \mathbb{C}$. Show that $|x + y + z| \le |x| + |y| + |z|$.
- 9. Let x, $y \in \mathbb{C}$. Show that $|x + y|^2 + |x y|^2 = 2(|x|^2 + |y|^2)$.
- 10. Let x, $y \in \mathbb{C}$. Show that $|x + y|^2 = |x|^2 + |y|^2 + 2\operatorname{Re}(a\bar{b})$.
- 11. Let $x, y \in \mathbb{R}$. Show that $|x + y| \ge ||x| |y|||$.
- 12. Let $x, y \in \mathbb{R}$. Show that $|x y| \ge ||x| |y|||$.
- 13. Let *x*, *y*, *z* $\in \mathbb{R}$. Show that $|x + y + z| \ge ||x| |y| |z|||$.
- 14. Give solutions to the following inequalities in terms of intervals:
 - (a) |x| > 3.
 - (b) $|1+2x| \le 4$.
 - (c) $|x+2| \ge 5$.
 - (d) |x-5| < |x+1|.
 - (e) |x-2| < 3 or |x+1| < 1.
 - (f) |x-2| < 3 and |x+1| < 1.

15. Let $a, b \in \mathbb{R}$ and let $0 < \varepsilon < |b|$. Show that $\left|\frac{a+\varepsilon}{b+\varepsilon}\right| \le \frac{|a|+\varepsilon}{|b|+\varepsilon}$. 16. Prove that if $a_1, a_2, ..., a_n \in \mathbb{R}$ then $\left|\sum_{k=1}^n a_k\right| \le \sum_{k=1}^n \left|a_k\right|$. 17. Prove that if $a_1, a_2, ..., a_n \in \mathbb{R}$ then $\left|\sum_{k=1}^n a_k\right| \ge |a_p| - \sum_{k=1, k \neq p}^n |a_k|$.

6. Inequalities

- 1. (Bernoulli's inequality) Prove that if $a \in \mathbb{R}$ and a > -1 then $(1 + a)^n \ge 1 + na$ for $n \in \mathbb{Z}_{>0}$
- 2. Prove that if $x \in \mathbb{R}$ then $1 + x \le e^x$.
- 3. Prove that if $x \in \mathbb{R}_{>0}$ then $\log x \ge \frac{x-1}{x}$.
- 4. Prove that if $x, y \in \mathbb{R}_{\geq 0}$ and $p \in \mathbb{R}$ with $0 then <math>(x + y)^p \le x^p + y^p$.
- 5. (Jensen's inequality) Let *I* be an interval in \mathbb{R} and let $f : I \to \mathbb{R}$ be a convex function. If x_1 , ..., $x_n \in \mathbb{R}$ and $t_1, ..., t_n \in [0, 1]$ with $t_1 + \dots + t_n = 1$, then $f(t_1x_1 + \dots + t_nx_n) \le t_1f(x_1)$ $+ \dots + t_nf(x_n)$.
- 6. If $x_1, ..., x_n \in \mathbb{R}_{\geq 0}$ and $t_1, ..., t_n \in \mathbb{R}_{\geq 0}$ with $t_1 + \dots + t_n = 1$, then $t_1 x_1 + \dots + t_n x_n \geq x_1^{t_1} \cdots x_n^{t_n}$.