620-295 Real Analysis with applications

Problem Sheet 4

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 9 September 2009

1. Sequences and series

1. Define the following and give an example for each:
(a) metric space,
(b) complete (for a metric space),
(c) completion (of a metric space),
2. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R}. Show that if $\left(a_{n}\right)$ is increasing and bounded then $\left(a_{n}\right)$ converges.
3. Let $\left(a_{n}\right)$ be a sequence in $\mathbb{R}_{\geq 0}$. Show that if $\sum_{n=1}^{\infty} a_{n}$ is bounded then $\sum_{n=1}^{\infty} a_{n}$ converges.
4. Let X be a metric space and let $\left(a_{n}\right)$ be a sequence in X. Show that if $\left(a_{n}\right)$ converges then (a_{n}) is Cauchy.
5. Give an example of a Cauchy sequence that does not converge.
6. Let $\left(a_{n}\right)$ be a sequence in $\mathbb{R}_{\geq 0}$. Show that if $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.
7. Let $\left(a_{n}\right)$ be a sequence in $\mathbb{R}_{\geq 0}$. Show that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
8. Let $r \in \mathbb{R}$ with $0<r<1$. Prove that $\lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{r}{n}\right)}{\frac{r}{n}}=1$.
9. Prove that $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$.
10. Prove that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
11. Prove that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
12. Prove that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=-\frac{1}{2}$.

2. Limits

1. Define the following and give an example for each:
(a) continuous at p,
(b) $\lim _{x \rightarrow a} f(x)$,
(c) continuous,
(d) uniformly continuous,
(d) Lipschiz continuous,
(e) derivative at p,
2. For each of the following, guess the limit and then prove the guess by using the definition of limit:
(a) $\lim _{x \rightarrow 4}\left(\frac{1}{2} x-3\right)$,
(b) $\lim _{x \rightarrow 0} \frac{1}{1+x}$,
(c) $\lim _{x \rightarrow 4} \frac{1}{1+x^{2}}$,
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$,
(e) $\lim _{x \rightarrow 9} \frac{x+1}{x^{2}+1}$,
(f) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$,
(g) $\lim _{x \rightarrow 2} \frac{2 x^{2}+3 x-8}{x^{3}-2 x^{2}+x-12}$,
(h) $\lim _{x \rightarrow \infty} \frac{\log x+2 x}{3 x-5}$,
3. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} x \cos \frac{1}{x^{2}}$,
(b) $\lim _{x \rightarrow 0}\left(\sqrt{5+x^{2}}-\sqrt{x^{-2}-1}\right)$,
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$,
(d) $\lim _{x \rightarrow \infty} \frac{x^{4}+x}{x^{4}+1}$,
(e) $\lim _{x \rightarrow \infty} \frac{7 x-1}{x^{2}}$,
(f) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{7+\sqrt{x+5}}}$,
(g) $\lim _{x \rightarrow 1} \frac{|x-1|+1}{x+|x+1|}$,
(h) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{2 x+1}$,
4. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x+x^{2}}$,
(b) $\lim _{x \rightarrow \infty} \frac{\log x}{x}$,
(c) $\lim _{x \rightarrow 0+} \sqrt{x} \log x$,
(d) $\lim _{x \rightarrow 0+} \frac{\sqrt{x}}{\log x}$,
(e) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$,
(f) $\lim _{x \rightarrow 0}\left(\frac{1}{\arcsin x}-\frac{1}{\sin x}\right)$.

3. Continuous functions

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that f is continuous at $x=0$ and if $x, y \in \mathbb{R}$ then $f(x+y)=f(x) f$ (y). Show that if $a \in \mathbb{R}$ then f is continuous at $x=a$.
2. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be such that f is continuous at $x=1$ and if $x, y \in \mathbb{R}_{>0}$ then $f(x y)=f($ $x)+f(y)$. Show that if $a \in \mathbb{R}_{>0}$ then f is continuous at $x=a$.
3. Let I be an interval in \mathbb{R}. Let $f: I \rightarrow \mathbb{R}$ be continous. Show that the function $|f|: I \rightarrow \mathbb{R}$ given by $|f|(x)=|f(x)|$ is continuous.
4. Let I be an interval in \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be continous. Show that the function $\max (f, g): I \rightarrow \mathbb{R}$ given by $\max (f, g)(x)=\max (f(x), g(x))$ is continuous.
5. (Thomae's function) Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)= \begin{cases}\frac{1}{n}, & \text { if } \frac{m}{n} \in \mathbb{Q} \text { is reduced, } \\ 0, & \text { if } x \notin \mathbb{Q} .\end{cases}$ Show that
(a) If $a \notin \mathbb{Q}$ then f is continuous at $x=a$, and
(b) If $a \in \mathbb{Q}$ then f is not continuous at $x=a$.
6. Let I be an interval in \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be continous. Show that the function $\min (f, g): I \rightarrow \mathbb{R}$ given by $\min (f, g)(x)=\min (f(x), g(x))$ is continuous.
7. Let $a \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)= \begin{cases}a x, & \text { if } x \leq 0, \\ \sqrt{x}, & \text { if } x>0 .\end{cases}$

Show that f is continuous.
8. Is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x$ uniformly continuous?
9. Is the function $f:(0,1) \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$ uniformly continuous?
10. Is the function $f:\left(10^{-4}, 1\right) \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$ uniformly continuous?
11. Is the function $f:(0,1) \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ uniformly continuous?
12. Is the function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{1-x^{2}}$ uniformly continuous?
13. Is the function $f:(1, \infty) \rightarrow \mathbb{R}$ given by $f(x)=\log x$ uniformly continuous?
14. Is the function $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=\log x$ uniformly continuous?
15. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=\frac{x}{(1+|x|)}$. Show that
(a) f is continuous,
(b) f is uniformly continuous,
(c) $\sup (f(\mathbb{R}))=1$,
(d) There does not exist $x \in \mathbb{R}$ such that $f(x))=1$,
(e) $\inf (f(\mathbb{R}))=-1$,
(d) There does not exist $y \in \mathbb{R}$ such that $f(y))=-1$.
16. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-6 x+3$ has exactly 3 roots.
17. Let I be an interval in \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be a continuous function. Prove that $f(I)$ is an interval.
18. Let I and J be intervals in \mathbb{R} and let $f: I \rightarrow J$ be a surjective strictly monotonic continuous function. Prove that the inverse function $g: J \rightarrow I$ exists and is strictly monotonic and continuous.

4. Differentiability

1. Let $a, b \in \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a function. Let $c \in[a, b]$ and carefully define $f^{\prime}(c)$.

Prove that if $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are functions then $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f$ ${ }^{\prime}(c) g(c)$, whenever $f^{\prime}(c)$ and $g^{\prime}(c)$ exist.
2. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be such that f is differentiable at $x=1$ and if $x, y \in \mathbb{R}_{>0}$ then $f(x y)=f$ $(x)+f(y)$. Show that
(a) if $c \in \mathbb{R}_{>0}$ then f is differentiable at $x=c$,
(b) if $c \in \mathbb{R}_{>0}$ then $f^{\prime}(c)=f^{\prime}(1) / c$,
(c) Show that f is infinitely differentiable.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that f is differentiable at $x=0$ and if $x, y \in \mathbb{R}$ then $f(x+y)=f(x$) $f(y)$. Show that
(a) if $c \in \mathbb{R}$ then f is differentiable at $x=c$,
(b) if $c \in \mathbb{R}_{>0}$ then $f^{\prime}(c)=f^{\prime}(0) f(c)$,
(c) Show that f is infinitely differentiable.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\left\{\begin{array}{cl}-x^{2}, & \text { if } x \leq 0, \\ x, & \text { if } x>0 .\end{array}\right.$

Is f continuous at $x=0$? Is f differentiable at $x=0$?
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)= \begin{cases}-x^{2}, & \text { if } x \leq 0, \\ x^{3}, & \text { if } x>0 .\end{cases}$ Is f continuous at $x=0$? Is f differentiable at $x=0$?
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)= \begin{cases}\frac{\sin x}{x,}, & \text { if } x<0, \\ 1+x^{2}, & \text { if } x \geq 0 .\end{cases}$ Is f continuous at $x=0$? Is f differentiable at $x=0$?
7. Let $a, b \in \mathbb{R}$ and assume that $f:[a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b) and continuous on [$a, b)$. Assume that the limit $\lim _{x \rightarrow a+} f^{\prime}(x)=L$ exists. Prove that the right derivative $f_{+}{ }^{\prime}(a)$ exists and that $f_{+}^{\prime}(a)=L$.
8. Let $a, b \in \mathbb{R}$ and assume that $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at c. Show that $\lim _{h \rightarrow 0+}$ $\frac{f(c+h)-f(c-h)}{2 h}$ exists and equals $f^{\prime}(c)$. Is the converse true?
9. Prove that $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.
10. Prove that $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$.

5. Mean value theorem

1. Use the mean value theorem to prove the following inequalities:
(a) $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
(b) $|\log x-\log y| \leq \frac{1}{2}|x-y|$ for all $x, y \in[2, \infty)$,
(c) $\left|(x+1)^{1 / 5}-x^{1 / 5}\right| \leq\left(5 x^{4 / 5}\right)^{-1}$ for all $x \in \mathbb{R}_{>0}$.
2. Use the mean value theorem to show that if a function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable with $f^{\prime}(x)>0$ for all x then f is strictly increasing.
3. Use the mean value theorem to show that if a function $f:(a, b) \rightarrow \mathbb{R}$ is twice differentiable with $f^{\prime \prime}(x)>0$ then f is strictly convex. (f is strictly convex if $f(t x+(1-t) y)<t f(x)$ $+(1-t) f(y)$ for all $x, y \in(a, b)$ and $t, y \in(0,1)$.

6. Picard and Newton iteration

1. Let $f:\left(0, \frac{1}{2} \pi\right) \rightarrow \mathbb{R}$ is given by $f(x)=\frac{1}{2} \tan x$. Estimate numerically the solution to $x=f($ $x)$ with $x \in\left(0, \frac{1}{2} \pi\right)$ using Picard iteration.
2. Let $f:\left(0, \frac{1}{2} \pi\right) \rightarrow \mathbb{R}$ is given by $f(x)=\frac{1}{2} \tan x$. Estimate numerically the solution to $x=f($ x) with $x \in\left(0, \frac{1}{2} \pi\right)$ using Newton iteration (let $F(x)=x-f(x)$).
3. Show that the equation $g(x)=x^{3}+x-1=0$ has a solution between 0 and 1 . Transform the equation to the form $x=f(x)$ for a suitable function $f:[0,1] \rightarrow[0,1]$. Use Picard iteration to find the solution to 3 decimal places. (Try $\left.f(x)=1 /\left(x^{2}+1\right)\right)$.
4. Show that the equation $g(x)=x^{4}-4 x^{2}-x+4=0$ has a solution between $\sqrt{3}$ and 2 . Transform the equation to the form $x=f(x)$ for a suitable function $f:[\sqrt{3}, 2] \rightarrow[\sqrt{3}, 2]$. Use Picard iteration to find the solution to 3 decimal places. (Try $f(x)=\sqrt{2+\sqrt{x}}$).

7. Topology

1. Define the following and give an example for each:
(a) metric space,
(b) limit of f as x approaches a,
(c) limit of $\left(x_{n}\right)$ as $n \rightarrow \infty$,
(j) continuous at $x=a$,
(c) continuous,
(d) uniformly continuous,
(e) Lipschitz,
(f) ε-ball,
2. Define the following and give an example for each:
(a) topology,
(b) topological space,
(c) open set,
(d) closed set,
(e) interior,
(f) closure,
(g) interior point,
(h) close point,
(i) neighborhood,
(j) fundamental system of neighborhoods,
(k) continuous at $x=a$,
(l) continuous,
3. Define the following and give an example for each:
(a) topological space,
(b) Hausdorff,
(b) fundamental system of neighborhoods,
(b) basis,
(c) connected set,
(d) compact set,
4. Prove that \mathscr{B} and is a basis of \mathscr{T} if and only if \mathscr{B} satisfies: if $x \in X$ then $\mathscr{B}(x)=\{B \in \mathscr{B} \quad \mid$ $x \in B\}$ is a fundamental system of neighborhoods of x.
5. Let X and Y be metric spaces. Define the topology on X and Y. Prove that $f: X \rightarrow Y$ is continuous as a function between metric spaces if and only if $f: X \rightarrow Y$ is continuous as a function between topological spaces.
6. Define the following and give an example for each:
(b) filter,
(c) finer,
(b) filter base,
(b) neighborhood filter,
(d) limit of f as x approaches a,
(b) Fréchet filter,
(d) limit of $\left(x_{n}\right)$ as $n \rightarrow \infty$.
7. Define the following and give an example for each:
(c) ultrafilter,
(d) quasicompact,
(d) Hausdorff,
(d) compact,
8. Let X be a Hausdorff topological space and let K be a compact subset of X. Show that K is closed.
9. Let X be a metric space. Show that X is Hausdorff and has a countable basis.
10. Let X be a metric space and let K be a compact subset of X. Show that K is closed and bounded.
11. Let X be a metric space and let E be a subset of X. Show that E is compact if and only if every infinite subset of E has a limit point in E. (What is the definition of limit point???)
12. Let K be a subset of \mathbb{R}^{n}. Show that K is compact if and only if K is closed and bounded.
13. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Show that if X is connected then $f(X)$ is connected.
14. Let $E \subseteq \mathbb{R}$. Show that E is connected if and only if the set E satisfies if $x, y \in E$ and $z \in \mathbb{R}$ and $x<z<y$ then $z \in E$.
15. (Intermediate Value Theorem) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Show that if z $\in \mathbb{R}$ and $f(a)<z<f(b)$ then there exists $c \in(a, b)$ such that $f(c)=z$.
16. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Show that if X is compact then $f(X)$ is compact.
17. Let D be a closed bounded subset of \mathbb{R} and let $f: D \rightarrow \mathbb{R}$ be a continuous function.
(a) f is a bounded function,
(b) f attains its maximum and minimum on D,
(a) f is uniformly continuous.
