Problem Set for 620-295

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 23 October 2009

1. Problems

Items marked with [???] need attention.

- (1) a. Define ordered monoid.
 - b. Define $\mathbb{Z}_{>0}$.
 - c. Show that $\mathbb{Z}_{>0}$ is an ordered monoid.
- (2) a. Define $\mathbb{Z}_{\geq 0}$.
 - b. Define \leq and the operations on $\mathbb{Z}_{\geq 0}$.
 - c. Show that $\mathbb{Z}_{\geq 0}$ is an ordered monoid.
- (3) a. Define \mathbb{Z} .
 - b. Define \leq and the operations on \mathbb{Z} .
 - c. Show that \mathbb{Z} is an ordered ring.
- (4) Define the clock [???] IS THIS CORRECT? monoid and show that it is a ring.
- (5) a. Define \mathbb{Q} .
 - b. Define \leq on \mathbb{Q} and the operations on \mathbb{Q} .
 - c. Show that \mathbb{Q} is an ordered field.
- (6) Let \mathbb{F}_1 and \mathbb{F}_2 be fields. Let $f : \mathbb{F}_1 \to \mathbb{F}_2$ be a function such that if $x, y \in \mathbb{F}_1$, then f(xy) = f(x)f(y) and f(x + y) = f(x) + f(y).
 - a. Show that f(0) = 0.
 - b. Show that f(1) = 1.
 - c. Show that f is injective.

- (7) Defive a function $f: \mathbb{Q} \to \mathbb{R}$ such that if $xy \in \mathbb{Q}$ then f(xy) = f(x)f(y) and f(x+y) = f(x) + f(y).
 - a. Show that f(1/8) = 0.125.
 - b. Show that f is injective.
 - c. Show that f is not surjective.
- (8) a. Define \mathbb{R} .
 - b. Define \leq on \mathbb{R} and the operations on \mathbb{R} .
 - c. Show that \mathbb{R} is an ordered field.
- (9) a. Define $\mathbb{Q}[x]$.
 - b. Define the operations on $\mathbb{Q}[x]$.
 - c. Show that $\mathbb{Q}[x]$ is an field.

(10) a. Define $\mathbb{Q}(x)$.

- b. Define the operations on $\mathbb{Q}(x)$.
- c. Show that $\mathbb{Q}(x)$ is an field.
- (11) a. Define $\mathbb{Q}[[x]]$.
 - b. Define the operations on $\mathbb{Q}[[x]]$.
 - c. Show that $\mathbb{Q}[[x]]$ is an field.

(12) a. Define $\mathbb{Q}((x))$.

- b. Define the operations on $\mathbb{Q}((x))$.
- c. Show that $\mathbb{Q}((x))$ is an field.
- (13) State and prove the Pythagorean Theorem.
- (14) Prove that there does not exist $x \in \mathbb{Q}$ with $x^2 = 2$.
- (15) a. Define $|| \text{ on } \mathbb{Z}, \mathbb{Q}, \mathbb{R} \text{ and } \mathbb{C}.$
 - b. Define a metric space.
 - c. Show that $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are metric spaces.
- (16) a. Define \mathbb{R}^7 .
 - b. Define || on \mathbb{R}^7 .
 - c. Show that \mathbb{R}^7 is a metric space.
- (17) Let X be a metric space. Define the metric space topology on X.
- (18) a. Define inverse function.b. Define bijective.

- c. Let $f: S \to T$ be a function. Prove that the inverse function to f exists if and only if f is bijective.
- (19) Write $\frac{1}{1-x}$ as an element of $\mathbb{Q}[[x]]$.
- (20) a. Define e^x .
 - b. Show that $e^0 = 1$
 - c. Show that $e^x e^y = e^{x+y}$.
 - d. Show that $e^{-x} = \frac{1}{e^x}$.
- (21) a. Define $\log x$.
 - b. Show that $\log(xy) = \log x + \log y$.
 - c. Show that $\log(1) = 0$.
 - d. Show that $\log(1/x) = -\log x$.

(22) Write
$$\frac{1}{1+x}$$
 as an element of $\mathbb{Q}[[x]]$.

- (23) Write $\log(1 + x)$ as an element of $\mathbb{Q}[[x]]$.
- (24) Write $\frac{1}{1+x^2}$ as an element of $\mathbb{Q}[[x]]$.
- (25) Write $\arctan x$ [???] INSTEAD OF TAN^{-1} as an element of $\mathbb{Q}[[x]]$.
- (26) Prove that there is a unique function $D_x : \mathbb{Q}[[x]] \to \mathbb{Q}[[x]]$ such that if $a, b \in \mathbb{Q}$ and $a, b \in \mathbb{Q}[[x]]$ then
 - a. D_x(a f + bg) = aD_x(f) + bD_x(g),
 b. D_x(fg) = fD_x(g) + D_x(f)g, and
 c. D_x(x) = 1.
- (27) Let $p \in \mathbb{Q}[[x]]$. Prove that there is a unique function $D_p : \mathbb{Q}[[x]] \to \mathbb{Q}[[x]]$ such that if $a, b \in \mathbb{Q}$ and $a, b \in \mathbb{Q}[[x]]$ then
 - a. $D_p(af + bg) = aD_p(f) + bD_p(g)$, [???] I ASSUME THIS IS WHAT IS MEANT.
 - b. D_p(fg) = fD_p(g) + D_p(f)g, and [???] I ASSUME THIS IS WHAT IS MEANT.
 c. D_p(x) = p.

(28)

Assume that
$$f = a_0 + a_1 x + a_2 x^2 + ... \in \mathbb{Q}[[x]]$$
. Show that $a_n = \frac{1}{n!} (D_x^n f)|_{x=0}$

(29) Let D_x be as in problem (26) above. Show that if $n \in \mathbb{Z}_{>0}$ then $D_x(x^n) = nx^{n-1}$.

(30) Show that if
$$n \in \mathbb{Z}_{>0}$$
 then $\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1).$

- (31) Assume $D_x f = f$ and $f = 1 + a_1 + a_2 x^2 + ... \in \mathbb{Q}[[x]]$. Compute the a_n .
- (32) Assume f and g are in $\mathbb{Q}[[x]]$ and that $D_x f = g$, $D_x g = -f$, f(0) = 1, and g(0) = 1. Compute f and g.
- (33) Write $(1 + x)^{1/2}$ as an element of $\mathbb{Q}[[x]]$.
- (34) Write $(1 + x)^7$ as an element of $\mathbb{Q}[[x]]$.
- (35) Define Pascal's triangle and explain its relation to x + y, $(x + y)^2$, $(x + y)^3$,
- (36) Let S be a set. Define the power set of S. Show that \supseteq is a partial order on the power set of S.
- (37) For $x, y \in \mathbb{Z}_{\geq 0}$ define x|y if there exists $n \in \mathbb{Z}_{>0}$ such that xn = y [???] DIFFERS FROM SHEET. Show that | is a partial order on $\mathbb{Z}_{>0}$.
- (38) Give an example of a partially ordered set S and a subset $E \subseteq S$ such that E has a maximum which is not an upper bound.
- (39) a. Define $\sup(E)$.
 - b. Give an example of when $\sup(E)$ does not exist.
 - c. Show that if sup(*E*) exists then it is unique.
- (40) a. Define $\inf(E)$.
 - b. Give an example of when inf(E) does not exist.
 - c. Show that if inf(E) exists then it is unique.
- (41) Show that $\mathbb{Z}_{>0}$ as a subset of \mathbb{R} is not bounded above.
- (42) As a subset of \mathbb{Q} find sup{ $x \in \mathbb{Q} | x^2 < 2$ }.
- (43) Show that $\operatorname{Card}(\mathbb{Z}_{>0}) = \operatorname{Card}(\mathbb{Z}_{\geq 0})$.
- (44) Show that $\operatorname{Card}(\mathbb{Z}) = \operatorname{Card}(\mathbb{Z}_{\geq 0})$.
- (45) Show that $\operatorname{Card}((0, 1]_{\mathbb{Q}}) = \operatorname{Card}(\mathbb{Z}_{>0}).$
- (46) Show that $\operatorname{Card}((0, 1]_{\mathbb{R}}) = \operatorname{Card}(\mathbb{Z}_{>0}).$
- (47) Show that if Card(S) = Card(T) and Card(T) = Card(U) then Card(S) = Card(U).

- (48) Show that if Card(S) = Card(T) then Card(T) = Card(S).
- (49) Satte and prove Lagrange's identity.
- (50) a. Define || and \langle , \rangle on \mathbb{R}^n . b. Prove that if $x, y \in \mathbb{R}$ [???] OR R^n ? then $\langle x, y \rangle \le |x||y|$.
- (51) a. Define $|| \text{ on } \mathbb{R}^n$. b. Prove that if $x, y \in \mathbb{R}$ [???] OR R^n ? then $|x + y| \le |x||y|$.
- (52) a. Define ordered field.
 - b. Let \mathbb{F} be an ordered field. Let $x, y \in \mathbb{F}$ with $x \ge 0$ and $y \ge 0$. Show that $x \le y$ if and only if $x^2 \le y^2$.
- (53) Find $\lim_{n \to \infty} \frac{1}{n}$.
- (54) Find $\lim_{n \to \infty} (-1)^{n-1}$.
- (55) Find $\lim_{n \to \infty} n$.
- (56) Let $x \in \mathbb{R}$. Find $\lim_{n \to \infty} x^n$.
- (57) Let $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$. Find $\sup a_n$, $\inf a_n$, $\limsup a_n$ and $\liminf a_n$.
- (58) Show that if (a_n) converges then (a_n) is Cauchy.

(59) Find
$$\sum_{n=0}^{\infty} (-1)^n$$
.

(60) Find
$$\sum_{n=0}^{\infty} x^n$$
.

(61) Find
$$\sum_{n=0}^{\infty} 1^n$$
.

(62) Find
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

(63) Find
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
.

(64) Show that if
$$k > 1$$
 then $\sum_{n=1}^{\infty} \frac{1}{n^k}$ converges.

(65) Show that if
$$k < 1$$
 [???] OR EQUAL? then $\sum_{n=1}^{\infty} \frac{1}{n^k}$ diverges.

- (66) Find $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$.
- (67) Find $\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n$.

(68) Find
$$\lim_{x \to 0} \frac{\log(1+x)}{x}$$

(69) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{-1^{n-1}}{n} x^n$.

- (70) Prove using the definition of the limit, that $\lim_{n \to \infty} \frac{n^2 1}{2n^2 + 3} = \frac{1}{2}$.
- (71) If you borrow \$500 on your credit card at 14% interest find the amounts due at the end of two years if the interest is compounded
 - a. annually,
 - b. quarterly,
 - c. monthly,
 - d. daily,
 - e. hourly,
 - f. every second,
 - g. every nanosecond, and
 - h. continuously.
- (72) Find a [???] THE? Taylor series for log(1 + x).

$$\lim_{n \to \infty} \frac{\log\left(1 + \frac{0.14}{n}\right)}{\frac{0.14}{n}}.$$

(74) Find
$$\lim_{n \to \infty} 500 \left(1 + \frac{0.14}{n} \right)^{2n}$$
.

- (75) Explain Picard iteration.
- (76) Explain Newton iteration.
- (77) Define contractive sequence.
- (78) Let (a_n) be a contractive sequence. Show that

$$|a_{n+1} - a_n| \le \alpha^{n+1} |a_2 - a_1|$$

where α is the contractive constant.

- (79) Define topology and topological space.
- (80) In \mathbb{R} , for each of the following intervals, determine whether it is open and whether it is closed:
 - a. (a, b)b. [a, b)c. (a, b]d. [a, b]e. $(-\infty, b)$
 - f. (a, ∞)
- (81) Define open set and closed set.
- (82) Define interior, closure, interior point and close point.
- (83) Define neighbourhood of x.
- (84) Let X be a topological space and let $E \subseteq X$.
 - a. Show that the interior of E is the set of interior points of E.
 - b. Show that the closure of E is the set of close points of E.
- (85) Define continuous function between topological spaces.
- (86) Define differentiable at x = c and derivative at x = c.
- (87) Define connected.
- (88) Let X and Y be topological spaces. Assume $f: X \to Y$ is continuous. Show that if X is connected than f(X) is connected.
- (89) Define ε -ball.
- (90) Define the [???] QUALIFY? topology on a metric space.
- (91) Define the topology on \mathbb{R} and \mathbb{R}^n .
- (92) Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$. Let $c \in [a, b]$ and assume f'(c) exists and g'(c) exists. Show that

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c).$$

- (93) Carefully state and prove the intermediate value theorem.
- (94) Carefully state and prove the mean value theorem.
- (95) Define compact.

- (96) Show that if $f: X \to Y$ is a continuous function and X is compact then f(X) is compact.
- (97) Let X be a metric space and $E \subseteq X$. Show that if E is compact then E is closed and bounded.
- (98) Let $X = \mathbb{R}^n$ and $E \subseteq X$. Show that E is compact if and only if E is closed and bounded.
- (99) Define bounded (for a subset of a metric space).
- (100) Assume $f : [a, b] \to \mathbb{R}$ is continuous. Show that there exists $c \in [a, b]$ such that if $x \in [a, b]$ then $f(x) \le f(c)$.
- (101) Give an example of a continuous and differentiable function $f : [a, b] \to \mathbb{C}$ such that f(a) = f(b) but f'(x) never equals zero.
- (102) Carefully state and prove l'Hôpital's rule.

(103) Evaluate
$$\lim_{x \to 0} \frac{5x}{x}$$
.

- (104) Evaluate $\lim_{x \to 0} \frac{e^x 1}{x}$.
- (105) Explain why l'Hôpital's rule works.
- (106) Define the Riemann integral, the trapezoidal integral and Simpson's integral.
- (107) Evaluate $\int_{0}^{2} e^{x} dx$ using the definition of the Riemann integral.
- (108) Evaluate $\int_{-1}^{1} \frac{1}{x^2} dx$ using the definition of the Riemann integral.
- (109) Discuss $\int_{-1}^{1} \frac{1}{x^2} dx$ from the point of view of the Fundamental Theorem of Calculus.
- (110) State the Fundamental Theorem of Calculus and explain why it is true.

(111) Define the improper integrals and give examples.

(112) Calculate
$$\int_0^\infty \frac{dx}{1+x^2}$$

(113) Let $p \in \mathbb{R}$, p > 1. Compute $\int_{1}^{\infty} \frac{dx}{x^{p}}$.

(114) Evaluate
$$\int_{1}^{\infty} \frac{dx}{x}$$

(115) Let
$$p \in \mathbb{R}$$
, $0 . Compute $\int_{1}^{\infty} \frac{dx}{x^{p}}$.$

(116) Evaluate $\int_{0}^{1} \frac{1}{x^{1/2}}$.

(117) Evaluate
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}}$$

- (118) Define converges pointwise and converges uniformly and give examples.
- (119) Graph the following functions.

a.
$$y = 1$$

b. $y = 1 + x$
c. $y = 1 + x + \frac{x^2}{2}$
d. $y = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$
e. $y = e^x$

- (120) Give an example of a sequence of functions $f : [a, b] \to \mathbb{R}$ that converges pointwise but not uniformly.
- (121) Show that the sequence of functions $f : [0, 1] \to \mathbb{R}$ given by $f_n(x) = \frac{1}{nx+1}$ converges pointwise, but not uniformly.
- (122) What is the error in a trapezoidal approximation to $\int_{a}^{b} f(x)dx$?
- (123) What is the error in a Simpson approximation to $\int_{a}^{b} f(x)dx$?
- (124) Find ln(2) to within 0.01 using a trapezoidal approximation.
- (125) Find ln(2) to within 0.01 using a Taylor series.
- (126) Approximate $\sqrt{17}$ to within 0.0001 using Taylor series.
- (127) State the Stone-Weierstrass theorem.
- (128) Define trigonometric series.

(129) Compute
$$\frac{1}{2\pi} \int_0^{2\pi} e^{ikx} dx$$
.

(130) Let
$$k, l \in \mathbb{Z}$$
. Compute $\frac{1}{2\pi} \int_{0}^{2\pi} e^{ikx} e^{-ilx} dx$.

- (131) Assume $f(x) = c_0 + c_1 e^{ix} + c_{-1} e^{-ix} + c_2 e^{2ix} + c_{-2} e^{-2ix} + \cdots$. Show that $c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$.
- (132) Find the expansion of x^2 as a trigonometric series.
- (133) Show that $\frac{\pi^2}{12} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k^2}$.
- (134) Let $n \in \mathbb{Z}_{>0}$. Find $\lim_{x \to \infty} x^n e^{-x}$.
- (135) Let $\alpha \in \mathbb{R}_{>0}$. Find $\lim_{x \to 0} x^{-\alpha} \ln x$.
- (136) Let $p \in \mathbb{R}_{>0}$. Find $\lim_{n \to \infty} \frac{1}{n^p}$.
- (137) Let $p \in \mathbb{R}_{>0}$. Find $\lim_{n \to \infty} p^{1/n}$.
- (138) Find $\lim_{n \to \infty} n^{1/n}$.
- (139) Let $\alpha \in \mathbb{R}$ and $p \in \mathbb{R}$. Find $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n}$.
- (140) Assume |x| < 1. Find $\lim_{n \to \infty} x^n$.
- (141) Find $\lim_{x \to 0} \frac{e^x 1}{x}.$
- (142) Find $\lim_{x \to 0} \frac{\sin x}{x}$.
- (143) Find $\lim_{x \to 0} \frac{\cos x 1}{x^2}$.
- (144) Find $\lim_{x \to 0} \frac{\log(1+x)}{x}$.

2. References [PLACEHOLDER]

[BG] <u>A. Braverman</u> and <u>D. Gaitsgory</u>, <u>Crystals via the affine Grassmanian</u>, <u>Duke Math. J.</u> <u>107 no.</u> <u>3</u>, (2001), 561-575; <u>arXiv:math/9909077v2</u>, <u>MR1828302</u> (2002e:20083)