620-295 Real Analysis with Applications

Assignment 3: Due 5pm on 4 September

Lecturer: Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010 Australia
aram@unimelb.edu.au

Due 5 pm on 4 September in the appropriate assignment box on the ground floor of Richard Berry.

1. Define the following and give an example for each:
(a) cardinality,
(b) finite,
(c) infinite,
(d) countable,
(e) uncountable.
2. Prove that $\operatorname{Card}\left(\mathbb{Z}_{>0}\right) \neq \operatorname{Card}(\mathbb{R})$.
3. Define the following and give an example for each:
(a) sequence,
(b) converges (for a sequence),
(c) diverges (for a sequence),
(d) limit (of a sequence),
(e) $\sup ($ of a sequence),
(f) \inf (of a sequence),
(g) lim sup (of a sequence),
(h) $\lim \inf$ (of a sequence),
(i) bounded (for a sequence),
(j) increasing (for a sequence),
(k) decreasing (for a sequence),
(l) monotone (for a sequence),
(m) Cauchy sequence.
4. Give an example of a sequence $\left(a_{n}\right)$ such that none of $\inf a_{n}, \lim \inf a_{n}, \lim \sup a_{n}$, and sup a_{n} are equal.
5. Find the power series expansions and the radius of convergence of $e^{x}, \log (1+x), \frac{1}{1-x}$, $(1+x)^{1 / 2}, \arctan x$, and $\sinh x$.
6. Let $r \in \mathbb{R}$ with $0<r<1$. Find $\lim _{n \rightarrow \infty}\left(1+\frac{\mathrm{r}}{n}\right)^{n}$, and explain why this limit is important to everyone with a credit card.
7. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
8. Let $r \in \mathbb{R}$. Find (with proof) $\sum_{n=1}^{\infty} r^{n}$.
9. Show that the alternating harmonic series for $\arctan 1$ is conditionally convergent but not absolutely convergent. Explain how to rearrange it so that its sum is 301 .
