620-295 Real Analysis with Applications

Assignment 3: Due 5pm on 4 September

Lecturer: Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

Due 5pm on 4 September in the appropriate assignment box on the ground floor of Richard Berry.

- 1. Define the following and give an example for each:
 - (a) cardinality,
 - (b) finite,
 - (c) infinite,
 - (d) countable,
 - (e) uncountable.
- 2. Prove that $\operatorname{Card}(\mathbb{Z}_{>0}) \neq \operatorname{Card}(\mathbb{R})$.
- 3. Define the following and give an example for each:
 - (a) sequence,
 - (b) converges (for a sequence),
 - (c) diverges (for a sequence),
 - (d) limit (of a sequence),
 - (e) sup (of a sequence),
 - (f) inf (of a sequence),
 - (g) lim sup (of a sequence),
 - (h) lim inf (of a sequence),
 - (i) bounded (for a sequence),
 - (j) increasing (for a sequence),
 - (k) decreasing (for a sequence),
 - (l) monotone (for a sequence),
 - (m) Cauchy sequence.
- 4. Give an example of a sequence (a_n) such that none of $\inf a_n$, $\liminf a_n$, $\limsup a_n$, and $\sup a_n$ are equal.
- 5. Find the power series expansions and the radius of convergence of e^x , $\log(1 + x)$, $\frac{1}{1-x}$, $(1 + x)^{1/2}$, $\arctan x$, and $\sinh x$.
- 6. Let $r \in \mathbb{R}$ with 0 < r < 1. Find $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$, and explain why this limit is important to everyone with a credit card.

7. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

8. Let
$$r \in \mathbb{R}$$
. Find (with proof) $\sum_{n=1}^{\infty} r^n$.

9. Show that the alternating harmonic series for arctan 1 is conditionally convergent but not absolutely convergent. Explain how to rearrange it so that its sum is 301.