620-295 Real Analysis with Applications

Assignment 6: Due 5pm on 30 October

Lecturer: Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

Due 5pm on 30 October in the appropriate assignment box on the ground floor of Richard Berry.

- 1. Determine the area of a parabola topped slice with left edge at x = l, right edge at $x = l + 2\Delta x$, middle at $x = l + \Delta x$, left height f(l), middle height $f(l + \Delta x)$, and right height $f(l + 2\Delta x)$.
- 2. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Show that $\lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$.
- 3. Assume that $\lim_{x \to a} f(x)$ exists. Show that $\lim_{x \to a} \exp(f(x)) = \exp\left(\lim_{x \to a} f(x)\right)$.
- 4. Assume that $f(x) = c_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots$. Show that $a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$, $a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx$ and $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx$.
- 5. Write a quadratic approximation for $f(x) = x^{1/3}$ near 8 and approximate $9^{1/3}$. Estimate the error and find the smallest interval that you can be sure contains the value.
- 6. Define the following and give an example of each:
 - (a) converges pointwise
 - (b) converges uniformly
 - (b) Taylor series
 - (b) Maclaurin series
 - (b) Lagrange's remainder
 - (b) Riemann's integral
 - (b) Trapezoidal integral
 - (b) Simpson's integral
- 7. Carefully state and prove the mean value theorem.
- 8. (a) Define topological space.
 - (b) Define closure of a set.
 - (b) Define close point.

(d) Let X be a topological space and let E be a subset of X. Show that the closure of E is equal to the set of close points to E.

- 9. Assume that $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ are functions, if $x \in [a, b]$ then $f(x) \le g(x)$, and $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ exist. Show that $\int_a^b f(x)dx \le \int_a^b g(x)dx$.
- 10. Assume that $f: [a, b] \to \mathbb{R}$ is continuous. Show that there exists $c \in [a, b]$ such that if $x \in [a, b]$ then $f(x) \le f(c)$ (i.e. *f* has a maximum at *c*).