MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2006

HOMEWORK 6
DUE October 16, 2006

Problem A. Graphs of the basic functions.
(1) Graph $f(x)=|x|$.
(2) Graph $f(x)=\lfloor x\rfloor$.
(3) Graph $f(x)=2$.
(4) Graph $f(x)=x$.
(5) Graph $f(x)=x^{2}$.
(6) Graph $f(x)=x^{3}$.
(7) Graph $f(x)=x^{4}$.
(8) Graph $f(x)=x^{5}$.
(9) Graph $f(x)=x^{6}$.
(10) Graph $f(x)=x^{100}$.
(11) Graph $f(x)=x^{-1}$.
(12) Graph $f(x)=x^{-2}$.
(13) Graph $f(x)=x^{-3}$.
(14) Graph $f(x)=x^{-4}$.
(15) Graph $f(x)=x^{-100}$.
(16) Graph $f(x)=e^{x}$.
(17) Graph $f(x)=\sin x$.
(18) Graph $f(x)=\cos x$.
(19) Graph $f(x)=\tan x$.
(20) Graph $f(x)=\cot x$.
(21) Graph $f(x)=\sec x$.
(22) Graph $f(x)=\csc x$.
(23) Graph $f(x)=\sqrt{x}$.
(24) Graph $f(x)=x^{1 / 3}$.
(25) Graph $f(x)=x^{1 / 4}$.
(26) Graph $f(x)=x^{1 / 5}$.
(27) Graph $f(x)=x^{1 / 6}$.
(28) Graph $f(x)=\frac{1}{\sqrt{x}}$.
(29) Graph $f(x)=x^{-1 / 3}$.
(30) Graph $f(x)=x^{-1 / 4}$.
(31) Graph $f(x)=\ln x$.
(32) Graph $f(x)=\sin ^{-1} x$.
(33) Graph $f(x)=\cos ^{-1} x$.
(34) Graph $f(x)=\tan ^{-1} x$.
(35) Graph $f(x)=\cot ^{-1} x$.
(36) Graph $f(x)=\sec ^{-1} x$.
(37) Graph $f(x)=\csc ^{-1} x$.

Problem B. Where is a function continuous?

(1) For which values of x is the function $f(x)=x^{2}+3 x+4$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(2) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x-6}{x-3}, & \text { if } x \neq 3, \\ 5, & \text { if } x=3,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(3) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{x}, & \text { if } x \neq 0, \\ 1, & \text { if } x=0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(4) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{x^{2}}, & \text { if } x \neq 0, \\ 1, & \text { if } x=0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(5) Determine the value of k for which the function $f(x)=\left\{\begin{array}{ll}\frac{\sin 2 x}{5 x}, & \text { if } x \neq 0, \\ k, & \text { if } x=0,\end{array}\right.$ is continuous at $x=0$. Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(6) For which values of x is the function $f(x)=\left\{\begin{array}{ll}x-1, & \text { if } 1 \leq x<2, \\ 2 x-3, & \text { if } 2 \leq x \leq 3,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(7) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\cos x, & \text { if } x \geq 0, \\ -\cos x, & \text { if } x<0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(8) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\sin (1 / x), & \text { if } x \neq 0, \\ 0, & \text { if } x=0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(9) Find the value of a for which the function $f(x)=\left\{\begin{array}{ll}a x+5, & \text { if } x \leq 2, \\ x-1, & \text { if } x>2,\end{array}\right.$ is continuous at $x=2$. Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(10) For which values of x is the function $f(x)=\left\{\begin{array}{ll}1+x^{2}, & \text { if } 0 \leq x \leq 1, \\ 2-x, & \text { if } x>1,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(11) For which values of x is the function $f(x)=2 x-|x|$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(12) Find the value of a for which the function $f(x)=\left\{\begin{array}{ll}2 x-1, & \text { if } x<2, \\ a, & \text { if } x=2, \\ x+1, & \text { if } x>2,\end{array}\right.$ is continuous at $x=2$. Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(13) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{|x-a|}{x-a}, & \text { if } x \neq a, \\ 1, & \text { if } x=a,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(14) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{x-|x|}{2}, & \text { if } x \neq 0, \\ 2, & \text { if } x=0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(15) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\sin x, & \text { if } x<0, \\ x, & \text { if } x \geq 0,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(16) For which values of x is the function $f(x)=\left\{\begin{array}{ll}\frac{x^{n}-1}{x-1}, & \text { if } x \neq 1, \\ n, & \text { if } x=1,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(17) Explain how you know that $f(x)=\sec x$ is continuous for all values of x. Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(18) For which values of x is the function $f(x)=\cos |x|$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(19) For which values of x is the function $f(x)=\lfloor x\rfloor$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(20) For which values of x is the function $f(x)=\left\{\begin{array}{ll}x^{3}-x^{2}+2 x-2, & \text { if } x \neq 1, \\ 4, & \text { if } x=1,\end{array}\right.$ continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.
(21) For which values of x is the function $f(x)=|x|+|x-1|,-1 \leq x \leq 2$, continuous? Justify your answer with limits if necessary and draw a graph of the function to illustrate your answer.

Problem C. Existence of limits.

(1) Explain why $\lim _{x \rightarrow 0} 1 / x$ does not exist.
(2) Explain why $\lim _{x \rightarrow \pi / 2} \tan x$ does not exist.
(3) Explain why $\lim _{x \rightarrow \pi / 2} \sec x$ does not exist.
(4) Explain why $\lim _{x \rightarrow 0} \csc x$ does not exist.
(5) Explain why $\lim _{x \rightarrow-1} \ln x$ does not exist.
(6) Explain why $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.
(7) Explain why $\lim _{x \rightarrow \infty} \cos x$ does not exist.
(8) Let $\operatorname{sgn}(x)$ be the sign function. This function is given by $\operatorname{sgn}(x)= \begin{cases}1, & \text { if } x>0, \\ 0, & \text { if } x=0, \\ -1, & \text { if } x<0 .\end{cases}$ Explain why $\lim _{x \rightarrow \infty} \operatorname{sgn}(x)$ does not exist.
(9) Explain why $\lim _{x \rightarrow 0} 2^{1 / x}$ does not exist.
(10) Explain why $\lim _{x \rightarrow 1} 2^{1 /(x-1)}$ does not exist.

Problem D. Increasing, decreasing, and concavity.

(1) What does it mean for a function $f(x)$ to be continuous at $x=a$? Explain how to test if a function is continuous at $x=a$.
(2) What does it mean for a function $f(x)$ to be differentiable at $x=a$? Explain how to test if a function is differentiable at $x=a$.
(3) What does $\left.\frac{d f}{d x}\right|_{x=a}$ indicate you about the graph of $y=f(x)$? Explain why this is true.
(4) What does it mean for a function to be increasing? Explain how to use calculus to tell if a function is increasing. Explain why this works.
(5) What does it mean for a function to be concave up? Explain how to use calculus to tell if a function is concave up. Explain why this works.
(6) What is a critical point? Explain how to find critical points of a function $f(x)$?
(7) What is a point of inflection? Explain how to find points of inflection of a function $f(x)$?
(8) What is an asymptote of a function $f(x)$? Explain how to justify that a given line is an asymptote of $f(x)$?
(9) If $f(x)=|x|$ what is $\left.\frac{d f}{d x}\right|_{x=2}$?
(10) Find the values of a and b so that the function $f(x)=\left\{\begin{array}{ll}x^{2}+3 x+a, & \text { if } x \leq 1, \\ b x+2, & \text { if } x>1,\end{array}\right.$ is differentiable for all values of x.

Problem E. Graphing polynomials.

For each of the following graphing problems also determine
(a) where $f(x)$ is defined,
(b) where $f(x)$ is continuous,
(c) where $f(x)$ is differentiable,
(d) where $f(x)$ is increasing and where it is decreasing,
(e) where $f(x)$ is concave up and where it is concave down,
(f) what the critical points of $f(x)$ are,
(g) where the points of inflection are, and
(h) what the asymptotes to $f(x)$ are (if $f(x)$ has asymptotes).
(1) Graph $f(x)=a$, where a is a constant.
(2) Graph $f(x)=a x+b$, where a and b are constants.
(3) Graph $f(x)=a(x-c)+b$, where a, b and c are constants.
(4) Graph $f(x)= \begin{cases}2-x, & \text { if } x \geq 1, \\ x, & \text { if } 0 \leq x \leq 1 .\end{cases}$
(5) Graph $f(x)= \begin{cases}2+x, & \text { if } x \geq 0, \\ 2-x, & \text { if } x<0 .\end{cases}$
(6) Graph $f(x)= \begin{cases}1-x, & \text { if } x<1, \\ x^{2}-1, & \text { if } x \geq 1 .\end{cases}$
(7) Graph $f(x)=2 x-x^{2}$.
(8) Graph $f(x)=x-x^{2}-27$.
(9) Graph $f(x)=3 x^{2}-2 x-1$.
(10) Graph $f(x)=x^{3}$.
(11) Graph $f(x)=x^{3}-x+1$.
(12) Graph $f(x)=x^{3}-x-1$.
(13) Graph $f(x)=(x-2)^{2}(x-1)$.
(14) Graph $f(x)=2 x^{3}-21 x^{2}+36 x-20$.
(15) Graph $f(x)=2 x^{3}+x^{2}-20 x$.
(16) Graph $f(x)=1-x^{4}$.
(17) Graph $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$.
(18) Graph $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$.
(19) Graph $f(x)=x^{5}-4 x^{4}+4 x^{3}$.
(20) Graph $f(x)=x^{3}(x-2)^{2}$.
(21) Graph $f(x)=(x-2)^{4}(x+1)^{3}(x-1)$.

