620-295 Real Analysis with applications

Assignment 1: Due 7 August 2009

Lecturer: Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

Last updates: 25 July 2009

- 1. Define the following sets and give examples of elements of each:
 - (a) the set of rational numbers,
 - (b) the set of real numbers,
 - (c) the set of complex numbers.

2. Let
$$\frac{a}{b}$$
, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Show that $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$.

- 3. State and prove the Pythagorean Theorem.
- 4. Compute and graph the following:
 - (a) $\frac{-15+i}{4+2i}$,

(b)
$$(27^{1/3})^4$$

(c)
$$27^{(4+1/3)}$$
.

5. Let z = x + iy with $x, y \in \mathbb{R}$. Compute and graph $\left| \frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \right|$.

- 6. Define the following and give examples:
 - (a) injective,
 - (b) surjective,
 - (c) composition of functions,
 - (d) abelian group.
- 7. Let $D : \mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$ be a function such that
 - (a) If $f, g \in \mathbb{Q}[x]$ then D(f+g) = D(f) + D(g)
 - (b) If $c \in \mathbb{Q}$ and $f \in \mathbb{Q}[x]$ then D(cf) = cD(f),
 - (c) If $f, g \in \mathbb{Q}[x]$ then D(fg) = fD(g) + D(f)g, and
 - (d) D(x) = 1.

Compute $D(x^n)$, for $n \in \mathbb{Z}_{\geq 0}$.

8. Write $\frac{1-x^n}{1-x}$ as an element of $\mathbb{Q}[x]$.