620-295 Real Analysis with applications

Assignment 1: Due 7 August 2009

Lecturer: Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 25 July 2009

1. Define the following sets and give examples of elements of each:
(a) the set of rational numbers,
(b) the set of real numbers,
(c) the set of complex numbers.
2. Let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{Q}$. Show that $\frac{a}{b}+\left(\frac{c}{d}+\frac{e}{f}\right)=\left(\frac{a}{b}+\frac{c}{d}\right)+\frac{e}{f}$.
3. State and prove the Pythagorean Theorem.
4. Compute and graph the following:
(a) $\frac{-15+i}{4+2 i}$,
(b) $\left(27^{1 / 3}\right)^{4}$,
(c) $27^{(4+1 / 3)}$.
5. Let $z=x+i y$ with $x, y \in \mathbb{R}$. Compute and graph $\left|\frac{(3+4 i)(-1+2 i)}{(-1-i)(3-i)}\right|$.
6. Define the following and give examples:
(a) injective,
(b) surjective,
(c) composition of functions,
(d) abelian group.
7. Let $D: \mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$ be a function such that
(a) If $f, g \in \mathbb{Q}[x]$ then $D(f+g)=D(f)+D(g)$
(b) If $c \in \mathbb{Q}$ and $f \in \mathbb{Q}[x]$ then $D(c f)=c D(f)$,
(c) If $f, g \in \mathbb{Q}[x]$ then $D(f g)=f D(g)+D(f) g$, and
(d) $D(x)=1$.

Compute $D\left(x^{n}\right)$, for $n \in \mathbb{Z}_{\geq 0}$.
8. Write $\frac{1-x^{n}}{1-x}$ as an element of $\mathbb{Q}[x]$.

