620-295 Real Analysis with applications

Problem Sheet 3

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

Last updates: 23 August 2009

1. Cardinality

- 1. Define the following and give an example for each:
 - (a) cardinality,
 - (b) finite,
 - (c) infinite,
 - (d) countable,
 - (e) uncountable.
- 2. Show that $\operatorname{Card}(\mathbb{Z}_{>0}) = \operatorname{Card}(\mathbb{Z}_{\geq 0})$.
- 3. Show that $Card(\mathbb{Z}_{>0}) = Card(\mathbb{Z})$.
- 4. Show that $Card(\mathbb{Z}_{>0}) = Card(\mathbb{Q})$.
- 5. Show that $\operatorname{Card}(\mathbb{Z}_{>0}) \neq \operatorname{Card}(\mathbb{R})$.
- 6. Show that $Card(\mathbb{C}) = Card(\mathbb{R})$.
- 7. Let *S* be a set. Show that Card(S) = Card(S).
- 8. Show that if Card(S) = Card(T) then Card(T) = Card(S).
- 9. Show that if Card(S) = Card(T) and Card(T) = Card(U) then Card(S) = Card(U).
- 10. Define $\operatorname{Card}(S) \leq \operatorname{Card}(T)$ if there exists an injective function $f: S \to T$. Show that if Card $(S) \leq \operatorname{Card}(T)$ and $\operatorname{Card}(T) \leq \operatorname{Card}(S)$ then $\operatorname{Card}(S) = \operatorname{Card}(T)$.

2. Sequences

- 1. Define the following and give an example for each:
 - (a) sequence,
 - (b) converges (for a sequence),
 - (c) diverges (for a sequence),
 - (d) limit (of a sequence),
 - (e) sup (of a sequence),
 - (f) inf (of a sequence),
 - (g) lim sup (of a sequence),
 - (h) lim inf (of a sequence),
 - (i) bounded (for a sequence),
 - (j) increasing (for a sequence),
 - (k) decreasing (for a sequence),
 - (l) monotone (for a sequence),
 - (m) Cauchy sequence,
 - (m) contractive sequence,
- 2. Prove that if (a_n) converges then $\lim_{n\to\infty} a_n$ is unique.
- 3. Prove that if (a_n) converges then (a_n) is bounded.
- 4. Prove that if $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then $\lim_{n\to\infty} a_n + b_n = a + b$.
- 5. Prove that if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n b_n = ab$.
- 6. Prove that if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ and $b_n \neq 0$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.
- 7. Prove that if $\lim_{n\to\infty} a_n = \ell$ and $\lim_{n\to\infty} c_n = \ell$ and $a_n \le b_n \le c_n$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n\to\infty} b_n = \ell$.
- 8. Prove that if (a_n) is increasing and bounded above then (a_n) converges.
- 9. Prove that if (a_n) is increasing and not bounded above then (a_n) diverges.
- 10. Prove that if (a_n) is decreasing and bounded below then (a_n) converges.
- 11. Prove that if (a_n) is decreasing and not bounded below then (a_n) diverges.
- 12. Prove that every sequence (a_n) of real numbers has a monotonic subsequence.
- 13. (Bolzano-Weirstrass) Prove that every sequence (a_n) of real or complex numbers has a convergent subsequence.
- 14. Prove that every Cauchy sequence (a_n) of real or complex numbers converges.

- 15. Prove that every convergent sequence (a_n) is a Cauchy sequence.
- 16. Graph and determine the sup, inf, lim sup, lim inf and convergence of the following sequences:

(a)
$$a_n = (-1)^n$$
,
(b) $a_n = \frac{1}{n}$,
(c) $a_n = \frac{(n!)^2 5^n}{(2n)!}$,
(d) $a_1 = 3, a_n = \frac{1}{2} \left(a_{n-1} + \frac{5}{a_{n-1}} \right)$,
(e) $a_n = \left(1 + \frac{1}{n} \right)^n$,
(f) $a_n = e^{in\pi/7}$,

17. Does the sequence given by $\frac{n}{2n+1}$ converge? If so, what is the limit?

- 18. Does the sequence given by \sqrt{n} converge? If so, what is the limit?
- 19. Does the sequence given by $\frac{1}{\sqrt{n}}$ converge? If so, what is the limit?
- 20. Does the sequence given by $\sqrt{n+1} \sqrt{n}$ converge? If so, what is the limit?
- 21. Does the sequence given by $\sqrt{n}(\sqrt{n+1} \sqrt{n})$ converge? If so, what is the limit?
- 22. Does the sequence given by $\frac{n}{n^2 + 1}$ converge? If so, what is the limit?
- 23. Does the sequence given by $\frac{2n}{n+1}$ converge? If so, what is the limit?
- 24. Does the sequence given by $\frac{3n+1}{2n+5}$ converge? If so, what is the limit?
- 25. Does the sequence given by $\frac{n^2 1}{2n^2 + 3}$ converge? If so, what is the limit?
- 26. Show that the sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ is increasing and bounded above by 3.

27. Let $a \in \mathbb{R}$ with |a| < 1. Does the sequence given by a^n converge? If so, what is the limit?

- 28. Let $a \in \mathbb{R}$ with a > 0. Does the sequence given by $a^{1/n}$ converge? If so, what is the limit?
- 29. Does the sequence given by $n^{1/n}$ converge? If so, what is the limit?
- 30. Let $a \in \mathbb{R}$ with a > 0. Fix a positive real number x_1 . Let $x_{n+1} = \frac{1}{2}(x_n + a / x_n)$. Show that the sequence x_n converges to \sqrt{a} .
- 31. Let α , $\beta \in \mathbb{R}_{>0}$. Let $a_1 = \alpha$ and $a_{n+1} = \sqrt{\beta + a_n}$. Show that the sequence a_n converges and find the limit.
- 32. Let α , $\beta \in \mathbb{R}_{>0}$. Let $a_1 = \alpha$ and $a_{n+1} = \beta + \sqrt{a_n}$. Show that the sequence a_n converges and find the limit.
- 33. Let $x_1 = 1$ and $x_{n+1} = \frac{1}{2+x_n}$. Show that the sequence x_n converges and find the limit.
- 34. Fix a real number x_1 between 0 and 1. Let $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$. Show that the sequence x_n converges and that the limit is a solution to the equation $x^3 7x + 2 = 0$. Use this observation to estimate the solution to $x^3 7x + 2 = 0$ to three decimal places.
- 35. Find the upper and lower limits of the sequence $(-1)^n (1 + \frac{1}{n})$.
- 36. Find the upper and lower limits of the sequence given by $a_1 = 0$, $a_{2k} = \frac{1}{2}a_{2k+1}$, and $a_{2k+1} = \frac{1}{2} + a_{2k}$.
- 37. Give an example of a sequence (a_n) such that none of $\inf a_n$, $\liminf a_n$, $\limsup a_n$, and $\sup a_n$ are equal.
- 38. Let a_n be a bounded sequence. Show that $\liminf a_n \le \limsup a_n$.
- 39. Let a_n be a bounded sequence. Show that a_n converges if and only if $\limsup a_n \le \liminf a_n$.
- 40. Let a_n be a bounded sequence such that $\limsup a_n \le \limsup a_n$. Show that $\limsup a_n = \lim a_n$.
- 41. Let a_n be a real sequence. Show that $\lim_{n \to \infty} a_n = a$ if and only if $\limsup a_n = \liminf a_n = a$.
- 42. Prove that $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.

3. Convergence theorems for sequences

- 1. Prove that a real sequence can have at most one limit.
- 2. Prove that every convergent sequence is Cauchy.
- 3. Prove that every Cauchy sequence which has a convergent subsequence is itself convergent.
- 4. Prove that every Cauchy sequence is bounded.
- 5. Prove that every convergent sequence is bounded.
- 6. Prove that a contractive sequence is Cauchy.
- 7. Prove that a contractive sequence is convergent.

4. Series

- 1. Define the following and give an example for each:
 - (a) series,
 - (b) converges (for a series),
 - (c) diverges (for a series),
 - (d) limit (of a series),
 - (e) absolutely convergent,
 - (f) conditionally convergent,
 - (g) geometric series,
 - (h) harmonic series,
- 2. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ converges. Use the integral test.
- 3. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$ converges. Use the integral test.
- 4. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ converges. Use the integral test.
- 5. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{(n-1)^2}$ converges. Use the integral test.
- 6. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges. Use the comparison test.

- 7. Determine if the series $\sum_{n=2}^{\infty} \frac{n}{n^3 1}$ converges. Use the comparison test.
- 8. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$ converges. Use the comparison test.
- 9. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ converges. Use the comparison test.
- 10. Determine if the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$ converges. Use the comparison test.
- 11. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$ converges. Use the comparison test.
- 12. Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3^n + 1}$ converges. Use the comparison test.
- 13. Determine if the series $\sum_{n=1}^{\infty} \frac{3^n + 1}{4^n + 1}$ converges. Use the comparison test.
- 14. Determine if the series $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$ converges. Use the ratio test.
- 15. Determine if the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges. Use the ratio test.
- 16. Determine if the series $\sum_{n=1}^{\infty} \frac{2^n}{n+1}$ converges. Use the ratio test.
- 17. Determine if the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges. Use the ratio test.
- 18. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ converges.
- 19. Determine if the series $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$ converges.

- 20. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^7}$ converges.
- 21. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$ converges.
- 22. Determine if the series $\sum_{n=1}^{\infty} \frac{n^3}{4^n}$ converges.
- 23. Determine if the series $\sum_{n=1}^{\infty} \frac{\sin n}{1+n^2}$ converges.
- 24. Determine if the series $\frac{2}{1} \frac{2}{2} + \frac{2}{3} \frac{2}{4} + \frac{2}{5} \cdots$ converges.
- 25. Determine if the series $-\frac{1}{2} + \frac{2}{3} \frac{3}{4} + \frac{4}{5} \frac{5}{6} + \cdots$ converges.
- 26. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\log(n+1)}$ converges.
- 27. Determine if the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$ converges.
- 28. Determine if the series $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}$ converges absolutely.
- 29. Determine if the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$ converges absolutely.
- 30. Determine if the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ converges absolutely.
- 31. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\log(n+1)}$ converges absolutely.

5. Power series

- 1. Write out the first four terms of the series $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$.
- 2. Write out the first four terms of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- 3. Write out the first four terms of the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}.$

4. Write out the first four terms of the series $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n+2}$.

- 5. Find the Taylor expansion of e^x at x = 0.
- 6. Find the Taylor expansion of $\sinh x$ at x = 0.
- 7. Find the Taylor expansion of $\frac{1}{1-x}$ at x = 0.
- 8. Find the Taylor expansion of e^x at x = 2.
- 9. Find the Taylor expansion of $\log x$ at x = 1.
- 10. Find the Taylor expansion of $\frac{1}{x^2}$ at x = 1.
- 11. Prove the identity $e^{ix} = \cos x + i \sin x$.
- 12. Prove the identity $e^x = \cosh x + \sinh x$.

13. Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$.

14. Find the radius of convergence of the series $\sum_{n=0}^{\infty} (-1)^n \frac{(x+1)^n}{(n+1)^2}.$

15. Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

16. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{\sqrt[3]{n}}.$

17. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$.

18. Find the interval of convergence of the series $\sum_{n=0}^{\infty} (-1)^n \frac{(x+1)^n}{(n+1)^2}.$

19. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

20. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{\sqrt[3]{n}}.$

21. Find the sum of the series
$$\sum_{n=1}^{\infty} nx^{n-1}$$
.

22. Find the sum of the series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$.

23. Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
.

24. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}$.

25. Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{1}{n2^{n+1}}$$
.

26. Find the sum of the series
$$\sum_{n=1}^{\infty} n(n-1) \left(\frac{1}{4}\right)^n$$
.

27. Find the power series representation of $\frac{1}{1+2x}$ and determine its radius of convergence.

28. Find the power series representation of $\frac{1}{1+x^2}$ and determine its radius of convergence.

29. Find the power series representation of $\frac{x}{1+x}$ and determine its radius of convergence.

30. Find the power series representation of $\frac{1}{(1+x)^2}$ and determine its radius of convergence.

31. Find the power series representation of $\arctan x$ and determine its radius of convergence.

- 32. Find the power series representation of log(2 + x) and determine its radius of convergence.
- 33. Find the power series representation of $\int e^{x^3} dx$.
- 34. Find the power series representation of $\int \frac{\sinh x}{x} dx$.
- 35. Find an infinite series representation of $\int_{-1}^{1} \frac{\sinh x}{x} dx.$
- 36. Find an infinite series representation of $\int_0^1 e^{x^3} dx$.