620-295 Real Analysis with applications

Problem Sheet 3

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 23 August 2009

1. Cardinality

1. Define the following and give an example for each:
(a) cardinality,
(b) finite,
(c) infinite,
(d) countable,
(e) uncountable.
2. Show that $\operatorname{Card}\left(\mathbb{Z}_{>0}\right)=\operatorname{Card}\left(\mathbb{Z}_{\geq 0}\right)$.
3. Show that $\operatorname{Card}\left(\mathbb{Z}_{>0}\right)=\operatorname{Card}(\mathbb{Z})$.
4. Show that $\operatorname{Card}\left(\mathbb{Z}_{>0}\right)=\operatorname{Card}(\mathbb{Q})$.
5. Show that $\operatorname{Card}\left(\mathbb{Z}_{>0}\right) \neq \operatorname{Card}(\mathbb{R})$.
6. Show that $\operatorname{Card}(\mathbb{C})=\operatorname{Card}(\mathbb{R})$.
7. Let S be a set. Show that $\operatorname{Card}(S)=\operatorname{Card}(S)$.
8. Show that if $\operatorname{Card}(S)=\operatorname{Card}(T)$ then $\operatorname{Card}(T)=\operatorname{Card}(S)$.
9. Show that if $\operatorname{Card}(S)=\operatorname{Card}(T)$ and $\operatorname{Card}(T)=\operatorname{Card}(U)$ then $\operatorname{Card}(S)=\operatorname{Card}(U)$.
10. Define $\operatorname{Card}(S) \leq \operatorname{Card}(T)$ if there exists an injective function $f: S \rightarrow T$. Show that if Card $(S) \leq \operatorname{Card}(T)$ and $\operatorname{Card}(T) \leq \operatorname{Card}(S)$ then $\operatorname{Card}(S)=\operatorname{Card}(T)$.

2. Sequences

1. Define the following and give an example for each:
(a) sequence,
(b) converges (for a sequence),
(c) diverges (for a sequence),
(d) limit (of a sequence),
(e) $\sup ($ of a sequence),
(f) \inf (of a sequence),
(g) $\lim \sup$ (of a sequence),
(h) $\lim \inf$ (of a sequence),
(i) bounded (for a sequence),
(j) increasing (for a sequence),
(k) decreasing (for a sequence),
(l) monotone (for a sequence),
(m) Cauchy sequence,
(m) contractive sequence,
2. Prove that if $\left(a_{n}\right)$ converges then $\lim _{n \rightarrow \infty} a_{n}$ is unique.
3. Prove that if $\left(a_{n}\right)$ converges then $\left(a_{n}\right)$ is bounded.
4. Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ then $\lim _{n \rightarrow \infty} a_{n}+b_{n}=a+b$.
5. Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ then $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.
6. Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ and $b_{n} \neq 0$ for all $n \in \mathbb{Z}_{>0}$ then $\lim _{n \rightarrow \infty}$ $\frac{a_{n}}{b_{n}}=\frac{a}{b}$.
7. Prove that if $\lim _{n \rightarrow \infty} a_{n}=\ell$ and $\lim _{n \rightarrow \infty} c_{n}=\ell$ and $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{Z}_{>0}$ then $\lim _{n \rightarrow \infty} b_{n}=\ell$.
8. Prove that if $\left(a_{n}\right)$ is increasing and bounded above then $\left(a_{n}\right)$ converges.
9. Prove that if $\left(a_{n}\right)$ is increasing and not bounded above then $\left(a_{n}\right)$ diverges.
10. Prove that if $\left(a_{n}\right)$ is decreasing and bounded below then $\left(a_{n}\right)$ converges.
11. Prove that if $\left(a_{n}\right)$ is decreasing and not bounded below then $\left(a_{n}\right)$ diverges.
12. Prove that every sequence $\left(a_{n}\right)$ of real numbers has a monotonic subsequence.
13. (Bolzano-Weirstrass) Prove that every sequence $\left(a_{n}\right)$ of real or complex numbers has a convergent subsequence.
14. Prove that every Cauchy sequence $\left(a_{n}\right)$ of real or complex numbers converges.
15. Prove that every convergent sequence $\left(a_{n}\right)$ is a Cauchy sequence.
16. Graph and determine the sup, inf, lim sup, lim inf and convergence of the following sequences:
(a) $a_{n}=(-1)^{n}$,
(b) $a_{n}=\frac{1}{n}$,
(c) $a_{n}=\frac{(n!)^{2} 5^{n}}{(2 n)!}$,
(d) $a_{1}=3, a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{5}{a_{n-1}}\right)$,
(e) $a_{n}=\left(1+\frac{1}{n}\right)^{n}$,
(f) $a_{n}=e^{i n \pi / 7}$,
17. Does the sequence given by $\frac{n}{2 n+1}$ converge? If so, what is the limit?
18. Does the sequence given by \sqrt{n} converge? If so, what is the limit?
19. Does the sequence given by $\frac{1}{\sqrt{n}}$ converge? If so, what is the limit?
20. Does the sequence given by $\sqrt{n+1}-\sqrt{n}$ converge? If so, what is the limit?
21. Does the sequence given by $\sqrt{n}(\sqrt{n+1}-\sqrt{n})$ converge? If so, what is the limit?
22. Does the sequence given by $\frac{n}{n^{2}+1}$ converge? If so, what is the limit?
23. Does the sequence given by $\frac{2 n}{n+1}$ converge? If so, what is the limit?
24. Does the sequence given by $\frac{3 n+1}{2 n+5}$ converge? If so, what is the limit?
25. Does the sequence given by $\frac{n^{2}-1}{2 n^{2}+3}$ converge? If so, what is the limit?
26. Show that the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is increasing and bounded above by 3 .
27. Let $a \in \mathbb{R}$ with $|a|<1$. Does the sequence given by a^{n} converge? If so, what is the limit?
28. Let $a \in \mathbb{R}$ with $a>0$. Does the sequence given by $a^{1 / n}$ converge? If so, what is the limit?
29. Does the sequence given by $n^{1 / n}$ converge? If so, what is the limit?
30. Let $a \in \mathbb{R}$ with $a>0$. Fix a positive real number x_{1}. Let $x_{n+1}=\frac{1}{2}\left(x_{n}+a / x_{n}\right)$. Show that the sequence x_{n} converges to \sqrt{a}.
31. Let $\alpha, \beta \in \mathbb{R}_{>0}$. Let $a_{1}=\alpha$ and $a_{n+1}=\sqrt{\beta+a_{n}}$. Show that the sequence a_{n} converges and find the limit.
32. Let $\alpha, \beta \in \mathbb{R}_{>0}$. Let $a_{1}=\alpha$ and $a_{n+1}=\beta+\sqrt{a_{n}}$. Show that the sequence a_{n} converges and find the limit.
33. Let $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}}$. Show that the sequence x_{n} converges and find the limit.
34. Fix a real number x_{1} between 0 and 1 . Let $x_{n+1}=\frac{1}{7}\left(x_{n}^{3}+2\right)$. Show that the sequence x_{n} converges and that the limit is a soluntion to the equation $x^{3}-7 x+2=0$. Use this observation to estimate the solution to $x^{3}-7 x+2=0$ to three decimal places.
35. Find the upper and lower limits of the sequence $(-1)^{n}\left(1+\frac{1}{n}\right)$.
36. Find the upper and lower limits of the sequence given by $a_{1}=0, a_{2 k}=\frac{1}{2} a_{2 k+1}$, and $a_{2 k+1}$ $=\frac{1}{2}+a_{2 k}$.
37. Give an example of a sequence $\left(a_{n}\right)$ such that none of $\inf a_{n}, \lim \inf a_{n}, \lim \sup a_{n}$, and sup a_{n} are equal.
38. Let a_{n} be a bounded sequence. Show that $\lim \inf a_{n} \leq \lim \sup a_{n}$.
39. Let a_{n} be a bounded sequence. Show that a_{n} converges if and only if $\lim \sup a_{n} \leq \lim \inf a_{n}$.
40. Let a_{n} be a bounded sequence such that $\lim \sup a_{n} \leq \lim \inf a_{n}$. Show that $\lim \sup a_{n}=\lim$ $\inf a_{n}=\lim a_{n}$.
41. Let a_{n} be a real sequence. Show that $\lim _{n \rightarrow \infty} a_{n}=a$ if and only if $\lim \sup a_{n}=\liminf a_{n}=$ a.
42. Prove that $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$.

3. Convergence theorems for sequences

1. Prove that a real sequence can have at most one limit.
2. Prove that every convergent sequence is Cauchy.
3. Prove that every Cauchy sequence which has a convergent subsequence is itself convergent.
4. Prove that every Cauchy sequence is bounded.
5. Prove that every convergent sequence is bounded.
6. Prove that a contractive sequence is Cauchy.
7. Prove that a contractive sequence is convergent.

4. Series

1. Define the following and give an example for each:
(a) series,
(b) converges (for a series),
(c) diverges (for a series),
(d) limit (of a series),
(e) absolutely convergent,
(f) conditionally convergent,
(g) geometric series,
(h) harmonic series,
2. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges. Use the integral test.
3. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$ converges. Use the integral test.
4. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ converges. Use the integral test.
5. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{(n-1)^{2}}$ converges. Use the integral test.
6. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges. Use the comparison test.
7. Determine if the series $\sum_{n=2}^{\infty} \frac{n}{n^{3}-1}$ converges. Use the comparison test.
8. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$ converges. Use the comparison test.
9. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ converges. Use the comparison test.
10. Determine if the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ converges. Use the comparison test.
11. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$ converges. Use the comparison test.
12. Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3^{n}+1}$ converges. Use the comparison test.
13. Determine if the series $\sum_{n=1}^{\infty} \frac{3^{n}+1}{4^{n}+1}$ converges. Use the comparison test.
14. Determine if the series $\sum_{n=1}^{\infty} \frac{n^{3}}{2^{n}}$ converges. Use the ratio test.
15. Determine if the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges. Use the ratio test.
16. Determine if the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n+1}$ converges. Use the ratio test.
17. Determine if the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges. Use the ratio test.
18. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}$ converges.
19. Determine if the series $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$ converges.
20. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{7}}$ converges.
21. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+n}}$ converges.
22. Determine if the series $\sum_{n=1}^{\infty} \frac{n^{3}}{4^{n}}$ converges.
23. Determine if the series $\sum_{n=1}^{\infty} \frac{\sin n}{1+n^{2}}$ converges.
24. Determine if the series $\frac{2}{1}-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}+\frac{2}{5}-\cdots$ converges.
25. Determine if the series $-\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\cdots$ converges.
26. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\log (n+1)}$ converges.
27. Determine if the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$ converges.
28. Determine if the series $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}$ converges absolutely.
29. Determine if the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$ converges absolutely.
30. Determine if the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$ converges absolutely.
31. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\log (n+1)}$ converges absolutely.

5. Power series

1. Write out the first four terms of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$.
2. Write out the first four terms of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
3. Write out the first four terms of the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$.
4. Write out the first four terms of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n+2}$.
5. Find the Taylor expansion of e^{x} at $x=0$.
6. Find the Taylor expansion of $\sinh x$ at $x=0$.
7. Find the Taylor expansion of $\frac{1}{1-x}$ at $x=0$.
8. Find the Taylor expansion of e^{x} at $x=2$.
9. Find the Taylor expansion of $\log x$ at $x=1$.
10. Find the Taylor expansion of $\frac{1}{x^{2}}$ at $x=1$.
11. Prove the identity $e^{i x}=\cos x+i \sin x$.
12. Prove the identity $e^{x}=\cosh x+\sinh x$.
13. Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$.
14. Find the radius of convergence of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x+1)^{n}}{(n+1)^{2}}$.
15. Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
16. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{\sqrt[3]{n}}$.
17. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$.
18. Find the interval of convergence of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x+1)^{n}}{(n+1)^{2}}$.
19. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
20. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{\sqrt[3]{n}}$.
21. Find the sum of the series $\sum_{n=1}^{\infty} n x^{n-1}$.
22. Find the sum of the series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$.
23. Find the sum of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
24. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}$.
25. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n 2^{n+1}}$.
26. Find the sum of the series $\sum_{n=1}^{\infty} n(n-1)\left(\frac{1}{4}\right)^{n}$.
27. Find the power series representation of $\frac{1}{1+2 x}$ and determine its radius of convergence.
28. Find the power series representation of $\frac{1}{1+x^{2}}$ and determine its radius of convergence.
29. Find the power series representation of $\frac{x}{1+x}$ and determine its radius of convergence.
30. Find the power series representation of $\frac{1}{(1+x)^{2}}$ and determine its radius of convergence.
31. Find the power series representation of $\arctan x$ and determine its radius of convergence.
32. Find the power series representation of $\log (2+x)$ and determine its radius of convergence.
33. Find the power series representation of $\int e^{x^{3}} d x$.
34. Find the power series representation of $\int \frac{\sinh x}{x} d x$.
35. Find an infinite series representation of $\int_{-1}^{1} \frac{\sinh x}{x} d x$.
36. Find an infinite series representation of $\int_{0}^{1} e^{x^{3}} d x$.
