Math 521: Lecture Notes, Fall 2004

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Numbers

The positive integers is the set

$$
\mathbb{Z}_{>0}=\{1,2,3, \ldots\} \quad \text { with the operation } \quad \begin{array}{rlll}
\mathbb{Z}_{>0} \times \mathbb{Z}_{>0} & \rightarrow \mathbb{Z}_{>0} \\
(i, j) & \mapsto & i+j
\end{array}
$$

The nonnegative integers is the set

$$
\mathbb{Z}_{\geq 0}=\{0,1,2,3, \ldots\} \quad \text { with the operation } \quad \begin{aligned}
\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} & \rightarrow \mathbb{Z}_{\geq 0} \\
(i, j) & \mapsto
\end{aligned}
$$

The advantage of the nonnegative integers $\mathbb{Z}_{\geq 0}$ over the positive integers $\mathbb{Z}_{>0}$ is that $\mathbb{Z}_{\geq 0}$ contains an identity element for the operation and $\mathbb{Z}_{>0}$ does not.
The integers is the set

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

with the operations

$$
\begin{aligned}
\mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto i+j
\end{aligned}
$$

The advantage of the integers \mathbb{Z} over the nonnegative integers $\mathbb{Z}_{\geq 0}$ is that every element of \mathbb{Z} has an inverse; this is not true in $\mathbb{Z}_{\geq 0}$. There is another operation on \mathbb{Z},

$$
\begin{array}{rll}
\mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto & i+(-j)
\end{array}
$$

but this operation is not very well behaved: it is not associative and not commutative (though it does have an identity). There is another operation on \mathbb{Z}

$$
\begin{array}{rll}
\mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto i j
\end{array}
$$

and this operation is associative, commutative and has an identity but does not have inverses. The rationals is the set

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\} \quad \text { where } \quad \frac{a}{b}=\frac{c}{d} \quad \text { if } a d=b c,
$$

with operations defined by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \frac{c}{d}=\frac{a c}{b d} .
$$

The advantage of the rationals \mathbb{Q} over the integers \mathbb{Z} is that the multiplication has inverses; well, ... almost has inverses-the element 0 does not have an inverse.

By long division, every rational number $\frac{a}{b}$ can be represented as a decimal expansion

$$
d_{r} d_{r-1} \cdots d_{1} d_{0} \cdot d_{-1} d_{-2} d_{-3} \cdots
$$

where the idea is that

$$
d_{r} d_{r-1} \cdots d_{1} d_{0} \cdot d_{-1} d_{-2} d_{-3} \cdots=\sum_{\ell \in \mathbb{Z}, \ell \leq r} d_{\ell} 10^{\ell}
$$

If $a=a_{r} \ldots a_{1} a_{0} \cdot a_{-1} a_{-2} \ldots$ is a decimal expansion let $a_{\leq n}$ be the element of \mathbb{Q} given by

$$
a_{\leq n}=a_{r} \ldots a_{1} a_{0} \cdot a_{-1} a_{-2} \ldots a_{-(n-1)} a_{-n} .
$$

The real numbers is the set \mathbb{R} of decimal expansions

$$
\mathbb{R}=\left\{d_{r} \cdots d_{1} d_{0} \cdot d_{-1} d_{-2} \cdots \mid d_{i} \in\{0,1,2, \ldots, 9\}\right\}
$$

with

$$
a=b \quad \text { for all } n \in \mathbb{Z}_{>0}\left(a_{\leq n}-b_{\leq n}\right)_{\leq n-1}=0 \text { in } \mathbb{Q},
$$

and operations determined by

$$
a+b=c \quad \text { if, for all } n \in \mathbb{Z}_{>0}, \quad\left(a_{\leq n}+b_{\leq n}\right)_{\leq n-1}=c_{\leq n-1} \text { in } \mathbb{Q},
$$

and

$$
a b=c \quad \text { if, for all } n \in \mathbb{Z}_{>0}, \quad\left(a_{\leq n} b_{\leq n}\right)_{\leq n-1}=c_{\leq n-1} \text { in } \mathbb{Q} .
$$

An irrational number is a real number that is not a rational number.
Theorem 1.1. $\mathbb{Q}=\{$ decimal expansions that repeat $\}$
Theorem 1.2. Irrational numbers exist.
The complex numbers is the set

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
$$

with operations given by

$$
\begin{gathered}
\left(a_{1}+b_{1} i\right)+\left(a_{2}+b_{2} i\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i \quad \text { and } \\
\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) i .
\end{gathered}
$$

Theorem 1.3. (The fundamental theorem of algebra) If $p_{0}, p_{1}, \ldots, p_{d} \in \mathbb{C}$ with $p_{d} \neq 0$ then there are $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{C}$ such that

$$
p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{d} x^{d}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{d}\right) .
$$

The algebraic numbers is the set

$$
\overline{\mathbb{Q}}=\{z \in \mathbb{C} \mid \text { there exists } p(x) \in \mathbb{Q}[x], p(x) \neq 0, \text { with } p(z)=0\}
$$

A transcendental number is a complex number that is not an algebraic number.

References

[BouA] Bourbaki, N. Algebra, Springer, New York, ????
[BouC] Bourbaki, N. Commutative Algebra, Springer, New York, ????
[BouF] Bourbaki, N. Functions of a Real Variable, Springer, New York, ????
[BouI] Bourbaki, N. Integration, Springer, New York, ????
[BouS] Bourbaki, N. Theory of Sets, Springer, New York, ????
[BouT] Bourbaki, N. General Topology, Springer, New York, ????
[BouV] Bourbaki, N. Topological Vector Spaces, Springer, New York, ????
[Ru] Rudin, W. Principles of Mathematical Analysis, McGraw-Hill, New York, ????
[DS] Dunford and Schwartz, ??, Wiley, New York, ????

