Math 521: Lecture 10

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Cardinality

How big is a set?
Let S and T be sets. S and T have the same cardinality, $\operatorname{Card}(S)=\operatorname{Card}(T)$, if there is a bijective map from S to T.

Notation: Let S be a set. Then

$$
\operatorname{Card}(S)=\left\{\begin{array}{ll}
0, & \text { if } S=\emptyset \\
n, & \text { if } \operatorname{Card}(S) \\
\infty & \text { otherwise }
\end{array}=\operatorname{Card}(\{1,2, \ldots, b\})\right.
$$

Note: Even if $\operatorname{Card}(S)=\infty$ and $\operatorname{Card}(T)=\infty$, one may have that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$.
A set S is finite if $\operatorname{Card}(S) \neq \infty$.
A set S is infinite if S is not finite.
A set S is countable if either S is finite or if $\operatorname{Card}(S)=\operatorname{Card}\left(\mathbb{Z}_{>0}\right)$.
A set S is uncountable if S is not countable.

Let X be a topological space. A perfect set is a subset E of X such that
(a) E is closed,
(b) if $x \in E$ the x is a limit point of E.

The Cantor set is

$$
C=\left\{x \in[0,1] \left\lvert\, x \notin\left[\frac{2 i-1}{3^{k}}, \frac{2 i}{3^{k}}\right]\right. \text { for } k \in \mathbb{Z}_{>0} \text { and } i \in \mathbb{Z}_{>0} \text { with } 2 i<3^{k}\right\}
$$

Theorem 1.1.

$$
\operatorname{Card}\left(\mathbb{Z}_{>0}\right)=\operatorname{Card}\left(\mathbb{Z}_{\geq 0}\right)=\operatorname{Card}(\mathbb{Z})=\operatorname{Card}(\mathbb{Q}) \neq \operatorname{Card}(\mathbb{R})=\operatorname{Card}(\mathbb{C})
$$

HW: Show that subsets of countable sets are countable.
HW: Show that countable unions of countable sets are countable.
HW: Show that if S is countable and $n \in \mathbb{Z}_{>0}$ then S^{n} is countable.
HW: Show that $2^{\mathbb{Z}}{ }^{>0}$ is uncountable.
HW; Show that $[a, b]$ is uncountable.
HW: Show that \mathbb{R} is uncountable.
HW: Show that the Cantor set is uncountable.
HW: Show that every perfect subset of \mathbb{R}^{k} is uncountable.
HW: Show that the Cantor set is perfect.

