Math 521: Lecture 11

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Ordered sets

Let S be a set. An **partial order** on S is a relation \leq on S such that

(a) If $x, y, z \in S$ and $x \leq y$ and $y \leq z$ then $x \leq z$,

(b) If $x, y \in S$ and $x \leq y$ and $y \leq x$ then x = y.

Let S be a set. An **total order** on S is a partial order \leq on S such that

(c) If $x, y \in S$ then $x \leq y$ or $y \leq x$.

A partially ordered set or poset is a set S with a partial order \leq on S.

Let S be a poset. A lower order ideal of S is a subset E of S such that if $y \in E$, $x \in S$ and $x \leq y$ then $x \in E$.

Let S be a poset and let E be a subset of S. An **upper bound** of E is an element $b \in S$ such that if $y \in E$ then $b \ge y$.

Let S be a poset and let E be a subset of S. An **lower bound** of E is an element $\ell \in S$ such that if $y \in E$ then $\ell \leq y$.

Let S be a poset and let E be a subset of S. The **greatest lower bound** of E is the element $inf(E) \in S$ such that

- (a) $\inf(E)$ is a lower bound of E,
- (b) if $\ell \in S$ is a lower bound of E then $\ell \leq \inf(E)$.

Let S be a poset and let E be a subset of S. The least upper bound of E is an element $sup(E) \in S$ such that

- (a) $\sup(E)$ is a upper bound of E,
- (b) if $b \in S$ is a upper bound of E then $\sup(E) \leq b$.

A **lattice** is an poset S such that every pair of elements $x, y \in S$ has a greatest lower bound and a least upper bound.

Let S be a poset. The **intervals** in S are the sets

$$[a,b] = \{x \in S \mid a \le x \le b\},\$$

$$[a,b] = \{x \in S \mid a \le x < b\},\$$

$$(a,b] = \{x \in S \mid a < x \le b\},\$$

$$(a,b) = \{x \in S \mid a < x < b\},\$$

$$[a,\infty) = \{x \in S \mid a < x < b\},\$$

$$(a,\infty) = \{x \in S \mid a < x\},\$$

$$(-\infty,b] = \{x \in S \mid x \le b\},\$$

$$(-\infty,b) = \{x \in S \mid x < b\},\$$

for $a, b \in S$. The sets [a, b], $a, b \in S$ are closed intervals and the sets (a, b), $a, b \in S$ are open intervals.

HW: Show that if S is a lattice then the intersection of two intervals is an interval. Give an example to show that this is not necessarily true if S is not a lattice.

A poset S is **left filtered** if every subset E of S has an upper bound.

A poset S is **right filtered** if every subset E of S has an lower bound.

Let S be a poset and let E be a subset of S. A **minimal element** of E is an element $x \in E$ such that if $y \in E$ then $x \leq y$.

A poset S is well ordered if every subset E of S has a minimal element.

HW: Show that Every well ordered set is totally ordered.

HW: Show that there exist totally ordered sets that are not well ordered.