Math 521: Lecture 11

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Ordered sets

Let S be a set. An partial order on S is a relation \leq on S such that
(a) If $x, y, z \in S$ and $x \leq y$ and $y \leq z$ then $x \leq z$,
(b) If $x, y \in S$ and $x \leq y$ and $y \leq x$ then $x=y$.

Let S be a set. An total order on S is a partial order \leq on S such that
(c) If $x, y \in S$ then $x \leq y$ or $y \leq x$.

A partially ordered set or poset is a set S with a partial order \leq on S.
Let S be a poset. A lower order ideal of S is a subset E of S such that if $y \in E, x \in S$ and $x \leq y$ then $x \in E$.

Let S be a poset and let E be a subset of S. An upper bound of E is an element $b \in S$ such that if $y \in E$ then $b \geq y$.
Let S be a poset and let E be a subset of S. An lower bound of E is an element $\ell \in S$ such that if $y \in E$ then $\ell \leq y$.
Let S be a poset and let E be a subset of S. The greatest lower bound of E is the element $\inf (E) \in S$ such that
(a) $\inf (E)$ is a lower bound of E,
(b) if $\ell \in S$ is a lower bound of E then $\ell \leq \inf (E)$.

Let S be a poset and let E be a subset of S. The least upper bound of E is an element $\sup (E) \in S$ such that
(a) $\sup (E)$ is a upper bound of E,
(b) if $b \in S$ is a upper bound of E then $\sup (E) \leq b$.

A lattice is an poset S such that every pair of elements $x, y \in S$ has a greatest lower bound and a least upper bound.
Let S be a poset. The intervals in S are the sets

$$
\begin{aligned}
{[a, b] } & =\{x \in S \mid a \leq x \leq b\}, \\
{[a, b) } & =\{x \in S \mid a \leq x<b\}, \\
(a, b] & =\{x \in S \mid a<x \leq b\}, \\
(a, b) & =\{x \in S \mid a<x<b\}, \\
{[a, \infty) } & =\{x \in S \mid a \leq x\}, \\
(a, \infty) & =\{x \in S \mid a<x\}, \\
(-\infty, b] & =\{x \in S \mid x \leq b\}, \\
(-\infty, b) & =\{x \in S \mid x<b\},
\end{aligned}
$$

for $a, b \in S$. The sets $[a, b], a, b \in S$ are closed intervals and the sets $(a, b), a, b \in S$ are open intervals.

HW: Show that if S is a lattice then the intersection of two intervals is an interval. Give an example to show that this is not necessarily true if S is not a lattice.

A poset S is left filtered if every subset E of S has an upper bound.
A poset S is right filtered if every subset E of S has an lower bound.
Let S be a poset and let E be a subset of S. A minimal element of E is an element $x \in E$ such that if $y \in E$ then $x \leq y$.

A poset S is well ordered if every subset E of S has a minimal element.
HW: Show that Every well ordered set is totally ordered.
HW: Show that there exist totally ordered sets that are not well ordered.

