Math 521: Lecture 12

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Ordered fields

An ordered monoid is a commutative monoid G with an ordering \leq such that

$$
\text { if } x, y, z \in G \text { and } x \leq y \text { then } x+z \leq y+z \text {. }
$$

An ordered group is an abelian group G with an ordering \leq such that

$$
\text { if } x, y, z \in G \text { and } x \leq y \text { then } x+z \leq y+z .
$$

An ordered ring is a commutative ring A with an ordering \leq such that
(a) A is an ordered group under + ,
(b) If $x, y \in A$ and $x \geq 0$ and $y \geq 0$ the $x y \geq 0$.

An ordered field is a field \mathbb{F} with a total ordering \leq such that \mathbb{F} is an ordered ring.
Let G be an ordered group and let $x \in G$. The element x is positive if $x \geq 0$. The element x is negative if $x \leq 0$. The element x is strictly positive if $x>0$. The element x is strictly negative if $x<0$.
Let G be a lattice ordered group. If $x \in G$ define

$$
x^{+}=\sup (x, 0), \quad \text { and } \quad x^{-}=\sup (-x, 0) .
$$

Let G be a lattice ordered group and let $x \in G$. The absolute value of x is

$$
|x|=\sup (x,-x) .
$$

Let G be an ordered group. Let $x, y \in G$. The elements x and y are coprime if $\inf (x, y)=0$.
Let G be an ordered group. Let $x \in G$. The element is irreducible if it is a minimal element of the set of strictly positive elements of G.
Let \mathbb{F} be an ordered field. If $x \in \mathbb{F}$ define

$$
\operatorname{sgn}(x)= \begin{cases}1, & \text { if } x>0 \\ -1, & \text { if } x<0 \\ 0, & \text { if } x=0\end{cases}
$$

The nonegative integers $\mathbb{Z}_{\geq 0}$ with the ordering defined by

$$
x \leq y \quad \text { if there is an } n \in \mathbb{Z}_{\geq 0} \text { with } y=x+n,
$$

is an ordered monoid. There is a unique extension of this ordering to \mathbb{Z} so that \mathbb{Z} is an ordered group. There is a unique extension of this ordering to \mathbb{Q} so that \mathbb{Q} is an ordered field. Show that
if $x, y \in \mathbb{Q}$ then $x \leq y$ if and only if $y-x \geq 0$.

We still need the proper characterization of \mathbb{R} as an ordered field that contains \mathbb{Q} and satisfies the least upper bound property. What is the proper uniqueness statement? Should we put Dedekind cuts here?

