Math 521: Lecture 12

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Ordered fields

An ordered monoid is a commutative monoid G with an ordering \leq such that

if $x, y, z \in G$ and $x \leq y$ then $x + z \leq y + z$.

An ordered group is an abelian group G with an ordering \leq such that

if $x, y, z \in G$ and $x \leq y$ then $x + z \leq y + z$.

An ordered ring is a commutative ring A with an ordering \leq such that

- (a) A is an ordered group under +,
- (b) If $x, y \in A$ and $x \ge 0$ and $y \ge 0$ the $xy \ge 0$.

An ordered field is a field \mathbb{F} with a total ordering \leq such that \mathbb{F} is an ordered ring.

Let G be an ordered group and let $x \in G$. The element x is **positive** if $x \ge 0$. The element x is **negative** if $x \le 0$. The element x is **strictly positive** if x > 0. The element x is **strictly negative** if x < 0.

Let G be a lattice ordered group. If $x \in G$ define

$$x^{+} = \sup(x, 0),$$
 and $x^{-} = \sup(-x, 0).$

Let G be a lattice ordered group and let $x \in G$. The **absolute value** of x is

$$|x| = \sup(x, -x).$$

Let G be an ordered group. Let $x, y \in G$. The elements x and y are **coprime** if inf(x, y) = 0. Let G be an ordered group. Let $x \in G$. The element is **irreducible** if it is a minimal element of the set of strictly positive elements of G.

Let $\mathbb F$ be an ordered field. If $x\in \mathbb F$ define

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{if } x < 0, \\ 0, & \text{if } x = 0. \end{cases}$$

The nonegative integers $\mathbb{Z}_{\geq 0}$ with the ordering defined by

$$x \leq y$$
 if there is an $n \in \mathbb{Z}_{>0}$ with $y = x + n$,

is an ordered monoid. There is a unique extension of this ordering to \mathbb{Z} so that \mathbb{Z} is an ordered group. There is a unique extension of this ordering to \mathbb{Q} so that \mathbb{Q} is an ordered field. Show that

if
$$x, y \in \mathbb{Q}$$
 then $x \leq y$ if and only if $y - x \geq 0$.

We still need the proper characterization of \mathbb{R} as an ordered field that contains \mathbb{Q} and satisfies the least upper bound property. What is the proper uniqueness statement? Should we put Dedekind cuts here?