Math 521: Lecture 15

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Neighborhoods

Let X be a topological space and let $x \in X$. A **neighborhood** of x is a subset N of X such that there exists an open subset U of X with $x \in U$ and $U \subseteq N$.

Let X be a topological space and let $E \subset X$. A **neighborhood** of E is a subset N of X such that there exists an open subset U of X with $E \subseteq U \subseteq N$.

2 Continuous functions

Continuous functions are for comparing topological spaces.

Let X and Y be topological spaces. A function $f: X \to Y$ is **continuous** if it satisfies the condition

if V is an open subset of Y then $f^{-1}(V)$ is an open subset of X.

Let X and Y be topological spaces. Let $a \in X$. A function $f: X \to Y$ is **continuous** at a if it satisfies the condition

if V is a neighborhood of f(a) in Y then $f^{-1}(V)$ is a neighborhood of a in X.

Theorem 2.1. Let X and Y be topological spaces and let $a \in X$. A function $f: X \to Y$ is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.

3 Filters

Let X be a set. A filter on X is a collection \mathcal{F} of subsets of X such that

- 1. (a) if $E \subseteq X$ such that there exists $U \in \mathcal{F}$ with $E \supseteq U$ then $E \in \mathcal{F}$,
- 2. (b) finite intersections of elements of F are in \mathcal{F} ,
- 3. (c) $\emptyset \notin \mathcal{F}$.

Let X be a set and let \mathcal{F}_1 and \mathcal{F}_2 be filters on X. The filter \mathcal{F}_1 is finer than \mathcal{F}_2 is $\mathcal{F}_1 \supseteq \mathcal{F}_2$. Let X be a topological space and let $x \in X$. The **neighborhood filter** of x is the collection

 $\mathcal{F} = \{ \text{neighborhoods of } x. \}$

The **Fréchet filter** on $\mathbb{Z}_{>0}$ is the collection

 $\mathcal{F} = \{ \text{complements of finite subsets of } \mathbb{Z}_{>0} \}.$

Let \mathcal{F} be a filter on a set X. A filter base of \mathcal{F} is a collection \mathcal{B} of subsets of X such that

 $\mathcal{F} = \{ \text{subsets of } X \text{ that contain a set in } \mathcal{B} \}.$

Let \mathcal{F} be a filter on a set X. A subbase of \mathcal{F} is a collection \mathcal{S} of subsets of X such that

 $\mathcal{B} = \{ \text{finite intersections of elements of } \mathcal{S} \}$

is a base of the filter \mathcal{F} .

4 Limits points and cluster points

Let X be a set and let \mathcal{F} be a filter on X. A **limit point** of \mathcal{F} is a point $x \in X$ such that the neighborhood filter of x is finer than \mathcal{F} .

Let X be a set and let \mathcal{B} be a filter base of a filter \mathcal{F} on X. A **cluster point** of \mathcal{B} is a point $x \in X$ such that x is in the closure of each set in \mathcal{B} .

Let X be a set with a filter \mathcal{F} and let Y be a topological space. Let $f: X \to Y$ be a function.

A **limit point** of $f: X \to Y$ is a limit point of the filter base $f(\mathcal{F})$. Write

Write
$$y = \lim_{\tau} f(x)$$
 if y is a limit point of f.

A cluster point of $f: X \to Y$ is a cluster point of the filter base $f(\mathcal{F})$.

Let X be a set. A sequence $(x_1, x_2, x_3, ...)$ of points in X is a function

Let X be a set and let $(x_1, x_2, ...)$ be a sequence in X. A **limit** of the sequence $(x_1, x_2, ...)$ is a limit point of the sequence with respect to the Fréchet filter on $\mathbb{Z}_{>0}$. Write

$$y = \lim_{n \to \infty} f(x)$$

if y is a limit of the sequence (x_1, x_2, \ldots) .

Let X be a set and let $(x_1, x_2, ...)$ be a sequence in X. A cluster point of the sequence $(x_1, x_2, ...)$ is a cluster point of the sequence with respect to the Fréchet filter on $\mathbb{Z}_{>0}$.

Let X and Y be topological spaces. Let $a \in X$. A **limit of** f(x) as x approaches a is a limit point of f with respect to the neighborhood filter of a. Write

$$y = \lim_{x \to a} f(x),$$

if y is a limit of f(x) as x approaches a.

Let X and Y be topological spaces and let $a \in X$. Let $f: X \to Y$ be a function. The function f is **continuous at** a if it satisfies the condition,

if N is a neighborhood of f(a) in Y then f^{-1} is a neighborhood of a in X.

Theorem 4.1. Let X and Y be topological spaces and let $a \in X$. A function $f: X \to Y$ is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.

5 Compact sets

Let X be a set. An **ultrafilter** on X is a filter \mathcal{F} such that there is no filter on X which is strictly finer that \mathcal{F} .

Let X be a topological space. The space X is **quasicompact** if every filter on X has a cluster point.

Theorem 5.1. Let X be a topological space. The following are equivalent.

- 1. (a) Every filter on X has at least one cluster point.
- 2. (b) Every ultrafilter on X is convergent.
- 3. (c) Every family of closed subsets of X whose intersection is empty contains a finite subfamily whose intersection is empty.
- 4. (d) Every open cover of X contains a finite subcover.

A topological space is **Hausdorff** if any two distinct points of X have disjoint neighborhoods. A topological space is **compact** if it is quasicompact and Hausdorff.