Math 521: Lecture 16

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Sequences

Let X be a set. A sequence $(x_1, x_2, x_3, ...)$ of points in X is a function

Let X be a set and let $(x_1, x_2, ...)$ be a sequence in X. A **limit** of the sequence $(x_1, x_2, ...)$ is a limit point of the sequence with respect to the Fréchet filter on $\mathbb{Z}_{>0}$. Write

 $y = \lim_{n \to \infty} x_n$ if y is a limit of the sequence (x_1, x_2, \ldots) .

The sequence $(x_1, x_2, ...)$ converges if $\lim_{n \to \infty} x_n$ exists and is unique.

The sequence (x_1, x_2, \ldots) diverges if it does not converge.

Let X be a totally ordered set and let $(x_1, x_2, ...)$ be a sequence in X. The **upper limit** lim sup x_n of the sequence $(x_1, x_2, ...)$ is the supremum of the set $\{x_1, x_2, ...\}$,

$$\limsup x_n = \sup(\{x_1, x_2, \ldots\}).$$

Let X be a totally ordered set and let $(x_1, x_2, ...)$ be a sequence in X. The **lower limit** lim inf x_n of the sequence $(x_1, x_2, ...)$ is the infimum of the set $\{x_1, x_2, ...\}$,

$$\liminf x_n = \inf(\{x_1, x_2, \ldots\}).$$

A sequence $(x_1, x_2, ...)$ is **bounded** if the set $\{x_1, x_2, ...\}$ is bounded.

A sequence $(x_1, x_2, ...)$ is monotonically increasing if it is such that if $i \in \mathbb{Z}_{>0}$ then $x_i \leq x_{i+1}$. A sequence $(x_1, x_2, ...)$ is monotonically decreasing if it is such that if $i \in \mathbb{Z}_{>0}$ then $x_i \geq x_{i+1}$.

2 Series

Let X be an abelian group and let (a_1, a_2, \ldots) be a sequence in X. The series $\sum_{n=1}^{\infty} a_n$ is

the sequence $(s_1, s_2, s_3, ...)$, where $s_k = s_1 + s_2 + \dots + s_k$.

Write

$$\sum_{n=1}^{\infty} a_n = a \quad \text{if} \quad \lim_{n \to \infty} s_n = a.$$

The series $\sum_{n=1}^{\infty} a_n$ converges if the sequence $(s_1, s_2, ...)$ converges. The series $\sum_{n=1}^{\infty} a_n$ diverges if the sequence $(s_1, s_2, ...)$ diverges. The series $\sum_{n=1}^{\infty} a_n$ converges absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges. ∞

Theorem 2.1. Suppose that $\sum_{n=1}^{\infty} a_n = a$ and $\sum_{n \in \mathbb{Z}_{>0}} a_n$ converges absolutely. Then

(a) Every rearrangement of
$$\sum_{n=1}^{\infty} a_n$$
 converges to a.

(b) If
$$\sum_{n=1}^{\infty} b_n$$
 is a series and $\sum_{n=1}^{\infty} b_n = b$ then

$$\left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right) = ab.$$