Math 521: Lecture 16

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Sequences

Let X be a set. A sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ of points in X is a function

$$
\begin{array}{rll}
\mathbb{Z}_{>0} & \longrightarrow & X \\
n & \longmapsto & x_{n}
\end{array}
$$

Let X be a set and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. A limit of the sequence $\left(x_{1}, x_{2}, \ldots\right)$ is a limit point of the sequence with respect to the Fréchet filter on $\mathbb{Z}_{>0}$. Write

$$
y=\lim _{n \rightarrow \infty} x_{n} \quad \text { if } y \text { is a limit of the sequence }\left(x_{1}, x_{2}, \ldots\right) .
$$

The sequence $\left(x_{1}, x_{2}, \ldots\right)$ converges if $\lim _{n \rightarrow \infty} x_{n}$ exists and is unique.
The sequence $\left(x_{1}, x_{2}, \ldots\right)$ diverges if it does not converge.
Let X be a totally ordered set and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. The upper limit $\lim \sup x_{n}$ of the sequence $\left(x_{1}, x_{2}, \ldots\right)$ is the supremum of the set $\left\{x_{1}, x_{2}, \ldots\right\}$,

$$
\lim \sup x_{n}=\sup \left(\left\{x_{1}, x_{2}, \ldots\right\}\right)
$$

Let X be a totally ordered set and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. The lower limit liminf x_{n} of the sequence $\left(x_{1}, x_{2}, \ldots\right)$ is the infimum of the set $\left\{x_{1}, x_{2}, \ldots\right\}$,

$$
\liminf x_{n}=\inf \left(\left\{x_{1}, x_{2}, \ldots\right\}\right)
$$

A sequence $\left(x_{1}, x_{2}, \ldots\right)$ is bounded if the set $\left\{x_{1}, x_{2}, \ldots\right\}$ is bounded.
A sequence $\left(x_{1}, x_{2}, \ldots\right)$ is monotonically increasing if it is such that if $i \in \mathbb{Z}_{>0}$ then $x_{i} \leq x_{i+1}$. A sequence $\left(x_{1}, x_{2}, \ldots\right)$ is monotonically decreasing if it is such that if $i \in \mathbb{Z}_{>0}$ then $x_{i} \geq$ x_{i+1}.

2
 Series

Let X be an abelian group and let $\left(a_{1}, a_{2}, \ldots\right)$ be a sequence in X. The series $\sum_{n=1}^{\infty} a_{n}$ is

$$
\text { the sequence } \quad\left(s_{1}, s_{2}, s_{3}, \ldots\right), \quad \text { where } \quad s_{k}=s_{1}+s_{2}+\cdots+s_{k} \text {. }
$$

Write

$$
\sum_{n=1}^{\infty} a_{n}=a \quad \text { if } \quad \lim _{n \rightarrow \infty} s_{n}=a
$$

The series $\sum_{n=1}^{\infty} a_{n}$ converges if the sequence $\left(s_{1}, s_{2}, \ldots\right)$ converges.
The series $\sum_{n=1}^{\infty} a_{n}$ diverges if the sequence $\left(s_{1}, s_{2}, \ldots\right)$ diverges.
The series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
Theorem 2.1. Suppose that $\sum_{n=1}^{\infty} a_{n}=a$ and $\sum_{n \in \mathbb{Z}_{>0}} a_{n}$ converges absolutely. Then
(a) Every rearrangement of $\sum_{n=1}^{\infty} a_{n}$ converges to a.
(b) If $\sum_{n=1}^{\infty} b_{n}$ is a series and $\sum_{n=1}^{\infty} b_{n}=b$ then

$$
\left(\sum_{n=1}^{\infty} a_{n}\right)\left(\sum_{n=1}^{\infty} b_{n}\right)=a b .
$$

