Math 521: Lecture 18

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Interiors and closures

Let X be a topological space and let $x \in X$. A **neighborhood** of x is a subset N of X such that there exists an open subset U of X with $x \in U$ and $U \subseteq N$.

Let X be a topological space and let $E \subset X$. A **neighborhood** of E is a subset N of X such that there exists an open subset U of X with $E \subseteq U \subseteq N$.

Let X be a topological space and let $E \subset X$. The **interior** of E is the subset E° of E such that

- (a) E° is open in X,
- (b) If U is an open subset of E then $U \subseteq E^{\circ}$.

Let X be a topological space and let $E \subseteq X$. The **closure** \overline{E} of E is the subset \overline{E} of X such that

- (a) \overline{E} is closed,
- (b) If V is a closed subset of X and $V \supseteq E$ then $V \supseteq \overline{E}$.

Let X be a topological space. Let $E \subseteq X$. An **interior point** of E is a point $x \in X$ such that there exists a neighborhood N_x of x with $N_x \subseteq E$.

Let X be a topological space. Let $E \subseteq X$. A close point to E is a point $x \in X$ such that If N_x is a neighborhood of x then N_x contains a point of E.

Theorem 1.1. Let X be a topological space. Let $E \subseteq X$.

- (a) The interior of E is the set of interior points of E.
- (b) The closure of E is the set of close points of E.

2 Hausdorff spaces

A **Hausdorff space** is a topological space X such that if $x, y \in Y$ and $x \neq y$ then there exist a neighborhood N_x of x and a neighborhood N_y of y such that $N_x \cup N_y = \emptyset$.

Theorem 2.1. Let X be a topological space. Show that the following are equivalent:

- (a) Any two distinct points of X have disjoint neighborhoods.
- (b) The intersection of the closed neighborhoods of any point of X consist of that point alone.
- (c) The diagonal of the product space $X \times X$ is a closed set.
- (d) For every set I, the diagonal of the product space $Y = X^{I}$ is closed in Y.
- (e) No filter on X has more than one limit point.
- (f) If a filter \mathcal{F} on X converges to x then x is the only cluster point of x.

3 Limit points and cluster points

Theorem 3.1. Let X be a topological space and let $(x_1, x_2, ...)$ be a sequence in X. Then

- (a) y is a limit point of $(x_1, x_2, ...)$ if and only if, if N_y is a neighborhood of y then there exists $n_0 \in \mathbb{Z}_{>0}$ such that $x_n \in N_x$ for all $n \in \mathbb{Z}_{\geq 0}$, $n \ge n_0$.
- (b) y is a cluster point of $(x_1, x_2, ...)$ if and only if, if N_y is a neighborhood of y and $n_0 \in \mathbb{Z}_{>0}$ then there exists $n \in \mathbb{Z}_{>0}$ with $n \ge n_0$ such that $x_n \in N_y$.

4 Compact sets

Let X be a set. A filter \mathcal{F} on X is **convergent** if it has a limit point.

Theorem 4.1. Let X be a topological space. The following are equivalent.

- (a) Every filter on X has at least one cluster point.
- (b) Every ultrafilter on X is convergent.
- (c) Every family of closed subsets of X whose intersection is empty contains a finite subfamily whose intersection is empty.
- (d) Every open cover of X contains a finite subcover.

Proof. (b) \Rightarrow (a): Let \mathcal{F} be a filter and let $\overline{\mathcal{F}}$ be an ultrafilter containing \mathcal{F} . Let x be a limit point of $\overline{\mathcal{F}}$. Then x is a limit point of \mathcal{F} .

(a) \Rightarrow (b): Let $\overline{\mathcal{F}}$ be an ultrafilter. Let x be a cluster point of $\overline{\mathcal{F}}$. Then x is a limit point of $\overline{\mathcal{F}}$. So $\overline{\mathcal{F}}$ is convergent.

(a) \Rightarrow (c): Let C be a closed family with empty intersection. If every finite subfamily has empty intersection then C generates a filter \mathcal{F} . Let x be a cluster point of \mathcal{F} . Then $x \in C$ for every set C in C. This is a contradiction. So there exists a finite subfamily that does not have empty intersection.

(c) \Rightarrow (a): If there exists a filter \mathcal{F} without a cluster point then $\mathcal{C} = \{\overline{F} \mid f \in \mathcal{F}\}$ is a family of closed sets contradicting (c).

(c) \Leftrightarrow (d) by taking complements.

Theorem 4.2. Let X be a metric space and let E be a subset of X. The set E is compact if and only if every infinite subset of E has a limit point in E.

Proof. \Leftarrow : Let K be a compact set and let E be a infinite subset of K. If there is no limit point of E in K then, for each $p \in K$ there is a neighborhood N_p which contains no other element of E. Then the open cover

$$\mathcal{N} = \{ N_p \mid p \in K \},\$$

of K has no finite subcover.

⇒: Let S be a infinite subset of E. The metric space E has a countable base. So every open cover of E has a countable subcover $C = \{C_1, C_2, \ldots\}$. If C does not have a finite subcover then, for each n, $(C_{\leq n})^c \neq \emptyset$ but $\bigcap_n C_{\leq n}^c = \emptyset$. Let S be a set which contains a point from each $C_{\leq n}^c$. Then S has a limit point. But this is a contradiction.

Theorem 4.3. Let X be a Hausdorff topological space and let K be a compact subset of X. Then K is closed.

Proof. Let $x \in \overline{K}$. The neighborhood filter $\mathcal{B}(x)$ of x induces a filter \mathcal{B}_K on K which has a cluster point $y \in K$. Since $\mathcal{B}(x)$ is coarser than \mathcal{B}_K (considered as a filter base on X) the point y is a cluster point of $\mathcal{B}(x)$. So y = x since X is Hausdorff.

The proof in baby Rudin: We will show that K^c is open. Let $p \in K^c$. Let \mathcal{N} be the open cover of K given by

$$\mathcal{N} = \{ N_q \mid q \in K \}, \quad \text{where} \quad N_q = B_{\frac{1}{2}d(p,q)}(q) \mid q \in K \}.$$

Let $\{N_{q_1}, \ldots, N_{q_\ell}\}$ be a finite subcover of K. Then

$$M = M_{q_1} \cap \cdots \cap M_{q_\ell}$$
, where $M_q = B_{\frac{1}{2}d(p,q)}(p)$,

is an open set such that $p \in M \subseteq K^c$. So p is an interior point of K^c . So K is open.

Theorem 4.4. Let X be a metric space and let E be a compact subset of X. Then E is closed and bounded.

Proof. Since a metric space is Hausdorff, E is closed. If E is not bounded then there is an infinite sequence in E that does not have a limit point.

Theorem 4.5. (a) A k-cell is compact.

(b) Let E be a subset of \mathbb{R}^k . If E is closed and bounded then E is compact.

Proof. If E is closed and bounded then E is a closed subset of a k-cell. Since closed subsets of compact sets are compact E is compact. \Box