Math 521: Lecture 2

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Sets and functions

The basic building blocks of mathematics are sets and functions. Functions are for comparing sets.

Sets.

A set is a collection of elements. Write $s \in S$ if s is an element of a set S.
The emptyset \emptyset is the set with no elements.
A subset T of a set S is a set T such that if $t \in T$ then $t \in S$. Write $T \subseteq S$ if T is a subset of S.

Two sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. Write $T=S$ if S and T are equal sets.
Let S and T be sets. S is a proper subset of T if $S \subseteq T$ and $S \neq T$. Write $S_{\neq} T$ if S is a proper subset of T.
Let S be a set and let A be a subset of S. The complement of A in S is the set

$$
A^{c}=\{b \in S \mid b \notin A\} .
$$

Let S and T be sets. The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$.

$$
S \cup T=\{u \mid u \in S \text { or } u \in T\} .
$$

Let S and T be sets. The intersection of S and T is the set $S \cap T$ of all u such that $u \in S$ and $u \in T$.

$$
S \cap T=\{u \mid u \in S \text { and } u \in T\} .
$$

Let S and T be sets. The sets S and T are disjoint if $S \cap T=\emptyset$.
The product of two sets S and T is the set of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$
S \times T=\{(s, t) \mid s \in S, t \in T\} .
$$

More generally, given sets S_{1}, \ldots, S_{n}, the product $\prod_{i} S_{i}$ is the set of all tuples $\left(s_{1}, \ldots, s_{n}\right)$ such that $s_{i} \in S_{i}$.

The elements of a set S are indexed by the elements of a set I if each element of S is labeled by a unique element of I. If $i \in I, s_{i}$ denotes the corresponding element of S.

Example. Let S, T, U, and V be the sets $S=\{1,2\}, U=\{1,2\}, T=\{1,2,3\}$, and $V=\{2,3\}$. Then
(a) $S \subseteq U \subseteq T$.
(b) $U \nsubseteq V$.
(c) $U \cup V=T$.
(d) $U \cap V=\{2\}$.
(e) $S \times T=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$.

Functions.

Let S and T be sets. A function or map $f: S \rightarrow T$ is given by associating to each element $s \in S$ an element $f(s) \in T$.

$$
\begin{aligned}
f: S & \rightarrow T \\
s & \mapsto f(s)
\end{aligned}
$$

Often in mathematics one will try to define a function without being exactly sure if what has been defined really is a function. In order to check that a function is well defined one must check that
(a) If $s \in S$ then $f(s) \in T$.
(b) If $s_{1}=s_{2}$ then $f\left(s_{1}\right)=f\left(s_{2}\right)$.

Let S and T be sets. Two functions $f: S \rightarrow T$ and $g: S \rightarrow T$ are equal if

$$
f(s)=g(s), \quad \text { for all } s \in S
$$

Write $f=g$ if f and g are equal functions.
Let $f: S \rightarrow T$ be a function. Let $K \subseteq S$. The image of K is the set

$$
f(K)=\{f(k) \mid k \in K\} .
$$

Let $f: S \rightarrow T$ be a function. Let $L \subseteq T$. The inverse image of L is the set

$$
f^{-1}(L)=\{s \in S \mid f(s) \in L\} .
$$

Let $f: S \rightarrow T$ be a function. The image of f is the set $f(S)$.
Let $f: S \rightarrow T$ be a function and let $t \in T$. The fiber of f over t is the set $f^{-1}(t)$.
A function $f: S \rightarrow T$ is injective if it satisfies the condition

$$
\text { If } s_{1}, s_{2} \in S \text { and } f\left(s_{1}\right)=f\left(s_{2}\right) \text { then } s_{1}=s_{2} .
$$

A map $f: S \rightarrow T$ is surjective if it satisfies the condition

$$
\text { if } t \in T \text { then there exists } s \in S \text { such that } f(s)=t \text {. }
$$

A function is bijective if it is both injective and surjective.
Examples. It is useful to visualize a function $f: S \rightarrow T$ as a graph with edges $(s, f(s))$ connecting elements of $s \in S$ and $f(s) \in T$. With this idea in mind we have the following.

PICTURE
In these pictures we are viewing the elements of the left column as elements of the set S and the elements of the right column as the elements of a set T. In order to be a function the graph must have exactly one edge adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of T. A function is surjective if there is at least one edge adjacent to each point of T.

Let $f: S \rightarrow T$ be a function and let $R \subseteq S$. The restriction of f to R is the function $\left.f\right|_{R}$ given by

$$
\begin{aligned}
\left.f\right|_{R}: R & \rightarrow T \\
r & \mapsto f(r) .
\end{aligned}
$$

Let S be a set, let R be a subset of S and let $f: R \rightarrow T$ be a function. An extension of f to S is a function $g: S \rightarrow T$ such that

$$
\text { if } \quad r \in R \text { then } g(r)=f(r) \text {. }
$$

Composition of functions.

Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. The composition of f and g is the function $g \circ f$ given by

$$
\begin{aligned}
(g \circ f): S & \rightarrow U \\
s & \mapsto g(f(s)) .
\end{aligned}
$$

Let S be a set. The identity map on a set S is the map given by

$$
\begin{aligned}
\mathrm{id}_{S}: S & \rightarrow S \\
s & \mapsto
\end{aligned}
$$

Let $f: S \rightarrow T$ be a function. An inverse function to f is a function $f^{-1}: T \rightarrow S$ such that

$$
f \circ f^{-1}=\operatorname{id}_{T} \quad \text { and } \quad f^{-1} \circ f=\operatorname{id}_{S} .
$$

where id_{T} and id_{S} are the identity functions on T and S respectively.
If we visualize functions as graphs, the identity function id_{S} looks something like
PICTURE
In the pictures below, if the left graph is a pictorial representation of a function $f: S \rightarrow T$ then the inverse function to $f, f^{-1}: T \rightarrow S$, is represented by the graph on the right.

PICTURE

Proposition 1. Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Pictorially, the graph, below left, represents a function $g: S \rightarrow T$ which is not bijective. The inverse function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of a function.

PICTURE

Let $f: S \rightarrow T$ be a surjective function. A section of f is a function $s: T \rightarrow S$ such that $f \circ s=\mathrm{id}_{T}$.
Let $f: S \rightarrow T$ be an injective function. A retraction of f is a function $f: S \rightarrow T$ such that $r \circ f=\mathrm{id}_{S}$.

