Math 521: Lecture 2

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Sets and functions

The basic building blocks of mathematics are sets and functions. Functions are for comparing sets.

Sets.

A set is a collection of elements. Write $s \in S$ if s is an element of a set S.

The **emptyset** \emptyset is the set with no elements.

A subset T of a set S is a set T such that if $t \in T$ then $t \in S$. Write $T \subseteq S$ if T is a subset of S.

Two sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. Write T = S if S and T are equal sets.

Let S and T be sets. S is a **proper subset** of T if $S \subseteq T$ and $S \neq T$. Write $S_{\neq} ^{\subset}T$ if S is a proper subset of T.

Let S be a set and let A be a subset of S. The **complement** of A in S is the set

$$A^c = \{ b \in S \mid b \notin A \}.$$

Let S and T be sets. The **union** of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$.

$$S \cup T = \{ u \mid u \in S \text{ or } u \in T \}.$$

Let S and T be sets. The **intersection** of S and T is the set $S \cap T$ of all u such that $u \in S$ and $u \in T$.

$$S \cap T = \{ u \mid u \in S \text{ and } u \in T \}.$$

Let S and T be sets. The sets S and T are **disjoint** if $S \cap T = \emptyset$.

The **product** of two sets S and T is the set of all ordered pairs (s,t) where $s \in S$ and $t \in T$,

$$S \times T = \{ (s,t) \mid s \in S, t \in T \}.$$

More generally, given sets S_1, \ldots, S_n , the **product** $\prod_i S_i$ is the set of all tuples (s_1, \ldots, s_n) such that $s_i \in S_i$.

The elements of a set S are **indexed** by the elements of a set I if each element of S is labeled by a unique element of I. If $i \in I$, s_i denotes the corresponding element of S.

Example. Let S, T, U, and V be the sets $S = \{1, 2\}$, $U = \{1, 2\}$, $T = \{1, 2, 3\}$, and $V = \{2, 3\}$. Then

- (a) $S \subseteq U \subseteq T$.
- (b) $U \not\subseteq V$.
- (c) $U \cup V = T$.
- (d) $U \cap V = \{2\}.$
- (e) $S \times T = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}.$

Functions.

Let S and T be sets. A function or map $f: S \to T$ is given by associating to each element $s \in S$ an element $f(s) \in T$.

$$\begin{array}{rccc} f:S & \to & T\\ s & \mapsto & f(s) \end{array}$$

Often in mathematics one will try to define a function without being exactly sure if what has been defined really is a function. In order to check that a function is **well defined** one must check that

- (a) If $s \in S$ then $f(s) \in T$.
- (b) If $s_1 = s_2$ then $f(s_1) = f(s_2)$.

Let S and T be sets. Two functions $f: S \to T$ and $g: S \to T$ are **equal** if

 $f(s) = g(s), \text{ for all } s \in S.$

Write f = g if f and g are equal functions.

Let $f: S \to T$ be a function. Let $K \subseteq S$. The **image** of K is the set

$$f(K) = \{f(k) \mid k \in K\}.$$

Let $f: S \to T$ be a function. Let $L \subseteq T$. The **inverse image** of L is the set

$$f^{-1}(L) = \{ s \in S \mid f(s) \in L \}.$$

Let $f: S \to T$ be a function. The **image** of f is the set f(S).

Let $f: S \to T$ be a function and let $t \in T$. The **fiber** of f over t is the set $f^{-1}(t)$.

A function $f: S \to T$ is **injective** if it satisfies the condition

If
$$s_1, s_2 \in S$$
 and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

A map $f: S \to T$ is surjective if it satisfies the condition

if $t \in T$ then there exists $s \in S$ such that f(s) = t.

A function is **bijective** if it is both injective and surjective.

Examples. It is useful to visualize a function $f: S \to T$ as a graph with edges (s, f(s)) connecting elements of $s \in S$ and $f(s) \in T$. With this idea in mind we have the following.

In these pictures we are viewing the elements of the left column as elements of the set S and the elements of the right column as the elements of a set T. In order to be a function the graph must have exactly one edge adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of T. A function is surjective if there is at least one edge adjacent to each point of T.

Let $f: S \to T$ be a function and let $R \subseteq S$. The **restriction** of f to R is the function $f|_R$ given by

$$\begin{array}{rccc} f|_R \colon R & \to & T \\ r & \mapsto & f(r). \end{array}$$

Let S be a set, let R be a subset of S and let $f: R \to T$ be a function. An **extension** of f to S is a function $g: S \to T$ such that

if
$$r \in R$$
 then $g(r) = f(r)$.

Composition of functions.

Let $f: S \to T$ and $g: T \to U$ be functions. The **composition** of f and g is the function $g \circ f$ given by

$$(g \circ f) \colon S \to U$$

 $s \mapsto g(f(s))$

Let S be a set. The **identity map** on a set S is the map given by

$$\begin{aligned} \mathrm{id}_S \colon S &\to S \\ s &\mapsto s. \end{aligned}$$

Let $f: S \to T$ be a function. An inverse function to f is a function $f^{-1}: T \to S$ such that

$$f \circ f^{-1} = \operatorname{id}_T$$
 and $f^{-1} \circ f = \operatorname{id}_S$.

where id_T and id_S are the identity functions on T and S respectively.

If we visualize functions as graphs, the identity function id_S looks something like

PICTURE

In the pictures below, if the left graph is a pictorial representation of a function $f: S \to T$ then the inverse function to $f, f^{-1}: T \to S$, is represented by the graph on the right.

PICTURE

Proposition 1. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Pictorially, the graph, below left, represents a function $g: S \to T$ which is not bijective. The inverse function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of a function.

PICTURE

Let $f: S \to T$ be a surjective function. A section of f is a function $s: T \to S$ such that $f \circ s = id_T$.

Let $f: S \to T$ be an injective function. A **retraction** of f is a function $f: S \to T$ such that $r \circ f = id_S$.