Math 521: Lecture 30

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 The space C(X)

Let X be a topological space. Let

$$\mathcal{M}(X) = \{f \colon X \to \mathbb{C}\}$$

be the algebra of complex valued functions on X.

The * operation on $\mathcal{M}(X)$ is the map $*: \mathcal{M}(X) \to \mathcal{M}(X)$ given by

$$f^*(x) = \overline{f(x)}, \quad \text{for } x \in X$$

Let X be a topological space. Let

 $C(X) = \{ f \colon X \to \mathbb{R} \mid f \text{ is continuous and bounded} \}.$

The supremum norm on C(X) is the function $\| \| : C(X) \to \mathbb{R}$ given by

$$||f|| = \sup_{x \in X} |f(x)|.$$

Define $d: C(X) \times C(X) \to \mathbb{R}_{\geq 0}$ by

$$d(f,g) = \|f - g\|.$$

Theorem 1.1. C(X) is a complete metric space.

2 Sequences of functions

Let X be a topological space. Let $\mathcal{M}(X)$ be the algebra of complex valued functions on X. Let (f_1, f_2, \ldots) be a sequence of functions in $\mathcal{M}(X)$. The sequence (f_1, f_2, \ldots) converges pointwise to $f: X \to \mathbb{C}$ if

The sequence (f_1, f_2, \ldots) converges pointwise to $f: X \to \mathbb{C}$ if

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \text{for } x \in X.$$

The sequence $(f_1, f_2, ...)$ converges uniformly to $f: X \to \mathbb{C}$ if it is such that if $\varepsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq 0}$ with $n \geq N$ then

$$|f_n(x) - f(x)| \le \varepsilon$$
, for all $x \in X$.

Proposition 1. Let $(f_1, f_2, ...)$ be a sequence of functions in C(X). Then $(f_1, f_2, ...)$ converges in C(X) if and only if $(f_1, f_2, ...)$ converges uniformly.

Theorem 2.1. Let X be a metric space and let $E \subseteq X$. Let x be a limit point of E. Let (f_1, f_2, \ldots) be a sequence of functions in $\mathcal{M}(E)$ and suppose that

$$\lim_{t \to x} f_n(t) \quad \text{exists for each } n \in \mathbb{Z}_{>0}.$$

Then

$$\lim_{n \to \infty} \lim_{t \to x} f_n(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t).$$

3 The Stone-Weierstrass theorem

Theorem 3.1. If $f: [a, b] \to \mathbb{C}$ is a continuous function then there exists a sequence of polynomials (p_1, p_2, \ldots) such that (p_1, p_2, \ldots) converges uniformly to f.

Let X be a metric space and let $E \subseteq X$. Let \mathcal{A} be a subalgebra of C(E).

The algebra \mathcal{A} is self adjoint if it is such that if $f \in \mathcal{A}$ then $f^* \in \mathcal{A}$.

The algebra \mathcal{A} separates points if it is such that if $x_1, x_2 \in E$ then there exists $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$.

The algebra \mathcal{A} vanishes at no point if it is such that if $x \in E$ then there exists $f \in \mathcal{A}$ such that $f(x) \neq 0$.

Theorem 3.2. Let X be a metric space and let K be a compact subset of X. Let \mathcal{A} be a subalgebra of C(K). If \mathcal{A} is self adjoint, separates points and and vanishes at no point of K then \mathcal{A} is dense in C(K).