Math 521: Lecture 4

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Relations

A relation on a set S is a subset of $S \times S$. Write $s_{1} \sim s_{2}$ if the pair $\left(s_{1}, s_{2}\right)$ is in the relation.
Let S be a set and let \sim be a relation on S. The relation \sim is reflexive if it satisfies the condition

$$
\text { If } s \in S \quad \text { then } s \sim s
$$

The relation \sim is symmetric if it satifies the condition

$$
\text { If } s_{1}, s_{2} \in S \text { and } s_{1} \sim s_{2} \text { then } s_{2} \sim s_{1} \text {. }
$$

The relation \sim is transitive if it satisfies the condition

$$
\text { If } s_{1}, s_{2}, s_{3} \in S \text { and } s_{1} \sim s_{2} \text { and } s_{2} \sim s_{3} \text { then } s_{1} \sim s_{3} .
$$

An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.
Example. Let S be the set $\{1,2,6\}$. Then
(a) $R_{1}\{(1,1),(2,6),(6,1)\}$ is a relation on S.
(b) R_{1} is not reflexive, not symmetric, and not transitive.
(c) $R_{2}=\{(1,1),(2,6),(6,1),(2,1)\}$ is a relation on S.
(d) R_{2} is transitive but not symmetric and not reflexive.

Let S be a set and let \sim be an equivalence relation on S. The equivalence class of an element $s \in S$ is the set

$$
[s]=\{t \in S \mid t \sim s\} .
$$

Let S be a set. A cover of S is a collection of subsets S_{α} such that

$$
\text { If } s \in S \text { then } s \in S_{\alpha} \text { for some } S_{\alpha} \text {. }
$$

Let S be a set. A partition of S is a collection of subsets S_{α} such that
(a) If $s \in S$ then $s \in S_{\alpha}$ for some S_{α}.
(b) If $S_{\alpha} \cap S_{\beta} \neq \emptyset$ then $S_{\alpha}=S_{\beta}$.

Proposition 1. (a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
(b) Let S be a set and let $\left\{S_{\alpha}\right\}$ be a partition of S. Then the relation defined by

$$
s \sim t \text { if } s \text { and } t \text { are in the same } S_{\alpha}
$$

is an equivalence relation on S.
Proposition ??? shows that the concepts of an equivalence relation on S and of a partition of S are essentially the same. Each equivalence relation on S determines a partition on S and vice versa.

Example. Let $S=\{1,2,3, \ldots, 10\}$. Let \sim be the equivalence relation determined by

$$
1 \sim 5, \quad 2 \sim 3, \quad 9 \sim 10, \quad 1 \sim 7, \quad 5 \sim 8, \quad 10 \sim 4
$$

Since we are requiring that \sim is an equivalence relation, we are assuming that we have all the other relations we need so that \sim is reflexive, symmetric, and transitive:

$$
\begin{gathered}
1 \sim 1,2 \sim 2, \ldots, 10 \sim 10 \\
5 \sim 7,7 \sim 8,7 \sim 5,5 \sim 1, \ldots
\end{gathered}
$$

Then the equivalence classes are given by

$$
\begin{aligned}
{[1]=[5]=[7]=[8] } & =\{1,5,7,8\} \\
{[2]=[3] } & =\{2,3\} \\
{[6] } & =\{6\} \\
{[4]=[9]=[10] } & =\{4,9,10\},
\end{aligned}
$$

and the sets

$$
S_{1}=\{1,5,7,8\}, S_{2}=\{2,3\}, S_{3}=\{6\}, \text { and } S_{4}=\{4,9,10\}
$$

form a partition of S.

