Math 521: Lecture 4

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Relations

A relation on a set S is a subset of $S \times S$. Write $s_1 \sim s_2$ if the pair (s_1, s_2) is in the relation. Let S be a set and let \sim be a relation on S. The relation \sim is reflexive if it satisfies the condition

If
$$s \in S$$
 then $s \sim s$.

The relation \sim is **symmetric** if it satisfies the condition

If $s_1, s_2 \in S$ and $s_1 \sim s_2$ then $s_2 \sim s_1$.

The relation \sim is **transitive** if it satisfies the condition

If $s_1, s_2, s_3 \in S$ and $s_1 \sim s_2$ and $s_2 \sim s_3$ then $s_1 \sim s_3$.

An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.

Example. Let S be the set $\{1, 2, 6\}$. Then

- (a) $R_1\{(1,1), (2,6), (6,1)\}$ is a relation on S.
- (b) R_1 is not reflexive, not symmetric, and not transitive.
- (c) $R_2 = \{(1,1), (2,6), (6,1), (2,1)\}$ is a relation on S.
- (d) R_2 is transitive but not symmetric and not reflexive.

Let S be a set and let \sim be an equivalence relation on S. The **equivalence class** of an element $s \in S$ is the set

$$[s] = \{t \in S \mid t \sim s\}.$$

Let S be a set. A cover of S is a collection of subsets S_{α} such that

If
$$s \in S$$
 then $s \in S_{\alpha}$ for some S_{α} .

Let S be a set. A **partition** of S is a collection of subsets S_{α} such that

(a) If $s \in S$ then $s \in S_{\alpha}$ for some S_{α} .

- (b) If $S_{\alpha} \cap S_{\beta} \neq \emptyset$ then $S_{\alpha} = S_{\beta}$.
- **Proposition 1.** (a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
 - (b) Let S be a set and let $\{S_{\alpha}\}$ be a partition of S. Then the relation defined by

 $s \sim t$ if s and t are in the same S_{α}

is an equivalence relation on S.

Proposition ??? shows that the concepts of an equivalence relation on S and of a partition of S are essentially the same. Each equivalence relation on S determines a partition on S and vice versa.

Example. Let $S = \{1, 2, 3, \dots, 10\}$. Let ~ be the equivalence relation determined by

 $1 \sim 5, 2 \sim 3, 9 \sim 10, 1 \sim 7, 5 \sim 8, 10 \sim 4.$

Since we are requiring that \sim is an equivalence relation, we are assuming that we have all the other relations we need so that \sim is reflexive, symmetric, and transitive:

$$1 \sim 1, \ 2 \sim 2, \ \dots, \ 10 \sim 10, 5 \sim 7, \ 7 \sim 8, \ 7 \sim 5, \ 5 \sim 1, \ \dots$$

Then the equivalence classes are given by

$$\begin{aligned} [1] &= [5] = [7] = [8] &= \{1, 5, 7, 8\} \\ [2] &= [3] &= \{2, 3\} \\ [6] &= \{6\} \\ [4] &= [9] = [10] &= \{4, 9, 10\}, \end{aligned}$$

and the sets

$$S_1 = \{1, 5, 7, 8\}, S_2 = \{2, 3\}, S_3 = \{6\}, \text{ and } S_4 = \{4, 9, 10\}$$

form a partition of S.