Math 521: Lecture 5

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Operations

An **operation** on a set S is a map $S \times S \to S$. Let

be an operation on S.

The operation \circ is **associative** if it satisfies the condition

If $s_1, s_2, s_3 \in S$ then $(s_1 \circ s_2) \circ s_3 = s_1 \circ (s_2 \circ s_3)$.

The operation \circ is **commutative** if it satisfies the condition

If $s_1, s_2 \in S$ then $s_1 \circ s_2 = s_2 \circ s_1$.

Examples. The operation

$$\begin{array}{rcccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (i,j) & \mapsto & i+j \end{array}$$

is both commutative and associative.

The operation

 $\begin{array}{rccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (i,j) & \mapsto & i-j \end{array}$

is noncommutative and nonassociative.

2 Monoids, groups, rings and fields

A monoid without identity is a set G with an operation

$$\begin{array}{rccc} G \times G & \to & G \\ (i,j) & \mapsto & i?j \end{array} \qquad \text{such that} \end{array}$$

(a) (? is associative) if $i, j, k \in G$ then (i?j)?k = i?(j?k),

A monoid is a set G with an operation

$$\begin{array}{rccc} G \times G & \to & G \\ (i,j) & \mapsto & i?j \end{array} \qquad \text{such that} \end{array}$$

- (a) (? is associative) if $i, j, k \in G$ then (i?j)?k = i?(j?k),
- (b) (G has an identity) There exists an element $! \in G$ such that if $y \in G$ then !?y = y?! = y,

An **commutative monoid** is a set G with an operation

$$\begin{array}{rccc} G \times G & \to & G \\ (i,j) & \mapsto & i+j \end{array} \qquad \text{such that} \end{array}$$

(a) G is a monoid,

(b) if $i, j \in G$ then i + j = j + i.

A group is a set G with an operation

$$\begin{array}{rccc} G \times G & \to & G \\ (i,j) & \mapsto & i?j \end{array} \qquad \text{such that} \end{array}$$

- (a) (? is associative) if $i, j, k \in G$ then (i?j)?k = i?(j?k),
- (b) (G has an identity) There exists an element $! \in G$ such that if $y \in G$ then !?y = y?! = y,
- (c) (*G* has inverses) if $y \in G$ there is an element $y^{\sharp} \in G$ such that $y?y^{\sharp} = y^{\sharp}?y = !$ where ! is the identity in *G*.

An **abelian group** is a set G with an operation

$$\begin{array}{rccc} G \times G & \to & G \\ (i,j) & \mapsto & i+j \end{array} \qquad \text{such that} \end{array}$$

(a) G is a group,

(b) if $i, j \in G$ then i + j = j + i.

The identity element of an abelian group is denoted 0.

A ring without identity is a set R with two operations

such that

- (a) R with the operation + is an abelian group,
- (b) (+ is commutative) If $i, j \in R$ then i + j = j + i,
- (c) (multiplication is associative) if $i, j, k \in R$ then (ij)k = i(jk),

(d) (distributive laws) if $i, j, k \in R$ then i(j+k) = ij + ik and (i+j)k = ik + jk.

A ring is a ring without identity R such that there is an element $1 \in R$ such that if $y \in R$ then 1y = y1 = y.

A commutative ring is a ring such that if $x, y \in R$ then xy = yx.

A field is a commutative ring \mathbb{F} such that if $y \in \mathbb{F}$ and $y \neq 0$ then there is an element $y^{-1} \in \mathbb{F}$ with $yy^{-1} = y^{-1}y = 1$.

A division ring is a ring \mathbb{D} such that if $y \in \mathbb{D}$ and $y \neq 0$ then there is an element $y^{-1} \in \mathbb{D}$ with $yy^{-1} = y^{-1}y = 1$.

The integers \mathbb{Z} with the addition operation is an abelian group. The integers \mathbb{Z} with the addition and multiplication operations is a ring. The rationals \mathbb{Q} with the operations addition and multiplication is a field.