Math 521: Lecture 5

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Operations

An operation on a set S is a map $S \times S \rightarrow S$.
Let

$$
\begin{aligned}
\circ: S \times S & \rightarrow S \\
\left(s_{1}, s_{2}\right) & \mapsto s_{1} \circ s_{2}
\end{aligned}
$$

be an operation on S.
The operation \circ is associative if it satisfies the condition

$$
\text { If } s_{1}, s_{2}, s_{3} \in S \text { then }\left(s_{1} \circ s_{2}\right) \circ s_{3}=s_{1} \circ\left(s_{2} \circ s_{3}\right) \text {. }
$$

The operation \circ is commutative if it satisfies the condition

$$
\text { If } s_{1}, s_{2} \in S \text { then } s_{1} \circ s_{2}=s_{2} \circ s_{1} \text {. }
$$

Examples. The operation

$$
\begin{aligned}
\mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto i+j
\end{aligned}
$$

is both commutative and associative.
The operation

$$
\begin{aligned}
\mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto i-j
\end{aligned}
$$

is noncommutative and nonassociative.

2 Monoids, groups, rings and fields

A monoid without identity is a set G with an operation

$$
\begin{array}{rll}
G \times G & \rightarrow G \\
(i, j) & \mapsto i ? j
\end{array} \quad \text { such that }
$$

(a) (? is associative) if $i, j, k \in G$ then $(i ? j) ? k=i ?(j ? k)$,

A monoid is a set G with an operation

$$
\begin{aligned}
G \times G & \rightarrow G \\
(i, j) & \mapsto i ? j \quad \text { such that }
\end{aligned}
$$

(a) (? is associative) if $i, j, k \in G$ then $(i ? j) ? k=i ?(j ? k)$,
(b) (G has an identity) There exists an element $!\in G$ such that if $y \in G$ then $!? y=y ?!=y$,

An commutative monoid is a set G with an operation

$$
\begin{aligned}
G \times G & \rightarrow G \\
(i, j) & \mapsto i+j \quad \text { such that }
\end{aligned}
$$

(a) G is a monoid,
(b) if $i, j \in G$ then $i+j=j+i$.

A group is a set G with an operation

$$
\begin{array}{rll}
G \times G & \rightarrow G & \quad \text { such that } \\
(i, j) & \mapsto i ? j
\end{array}
$$

(a) (? is associative) if $i, j, k \in G$ then $(i ? j) ? k=i ?(j ? k)$,
(b) (G has an identity) There exists an element $!\in G$ such that if $y \in G$ then $!? y=y ?!=y$,
(c) (G has inverses) if $y \in G$ there is an element $y^{\sharp} \in G$ such that $y ? y^{\sharp}=y^{\sharp} ? y=$! where! is the identity in G.

An abelian group is a set G with an operation

$$
\begin{aligned}
G \times G & \rightarrow G \\
(i, j) & \mapsto i+j \quad \text { such that }
\end{aligned}
$$

(a) G is a group,
(b) if $i, j \in G$ then $i+j=j+i$.

The identity element of an abelian group is denoted 0 .
A ring without identity is a set R with two operations

$$
\begin{aligned}
R \times R & \rightarrow R \\
(i, j) & \mapsto i+j
\end{aligned} \quad \text { and } \quad \begin{array}{rlll}
R \times R & \rightarrow & R \\
(i, j) & \mapsto & i j
\end{array}
$$

such that
(a) R with the operation + is an abelian group,
(b) (+ is commutative) If $i, j \in R$ then $i+j=j+i$,
(c) (multiplication is associative) if $i, j, k \in R$ then $(i j) k=i(j k)$,
(d) (distributive laws) if $i, j, k \in R$ then $i(j+k)=i j+i k$ and $(i+j) k=i k+j k$.

A ring is a ring without identity R such that there is an element $1 \in R$ such that if $y \in R$ then $1 y=y 1=y$.
A commutative ring is a ring such that if $x, y \in R$ then $x y=y x$.
A field is a commutative ring \mathbb{F} such that if $y \in \mathbb{F}$ and $y \neq 0$ then there is an element $y^{-1} \in \mathbb{F}$ with $y y^{-1}=y^{-1} y=1$.
A division ring is a ring \mathbb{D} such that if $y \in \mathbb{D}$ and $y \neq 0$ then there is an element $y^{-1} \in \mathbb{D}$ with $y y^{-1}=y^{-1} y=1$.
The integers \mathbb{Z} with the addition operation is an abelian group. The integers \mathbb{Z} with the addition and multiplication operations is a ring. The rationals \mathbb{Q} with the operations addition and multiplication is a field.

