Math 521: Lecture 7

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Fields of fractions

Let A be a commutative ring. A **zero divisor** is an element $a \in A$ such that there exists $b \in A$ such that $b \neq 0$ and ab = 0.

A integral domain is a commutative ring A with no zero divisors except 0.

Let A be an integral domain. A **field of fractions** of A is the set

$$\mathbb{F} = \left\{ \frac{a}{b} \mid a, b \in A, b \neq 0 \right\},\$$

with

$$\frac{a}{b} = \frac{c}{d}$$
 if $ad = bc$,

and operations given by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{cd}$

Theorem 1.1. Let A be an integral domain. Let \mathbb{F} be the field of fractions of A.

- (a) The operations on \mathbb{F} are well defined and \mathbb{F} is a field.
- (b) The map

is an injective ring homomorphism.

(c) If \mathbb{K} is a field with an injective ring homomorphism $\zeta \colon A \to \mathbb{K}$ then there is a unique ring homomorphism $\varphi \colon \mathbb{F} \to \mathbb{K}$ such that $\zeta = \varphi \circ \iota$.