Math 521: Lecture 8

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 The exponential function

Let $k \in \mathbb{Z}_{\geq 0}$ define k factorial by

$$
0!=0 \quad \text { and } \quad k!=k \cdot(k-1) \cdots 3 \cdot 2 \cdot 1, \quad \text { if } k \in \mathbb{Z}_{\geq 0} .
$$

Let $n, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$. Define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Theorem 1.1. Let $n, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$.
(a) Let S be a set of cardinality n. Then $\binom{n}{k}$ is the number of subsets of S of cardinality k.
(b) $\binom{n}{k}$ is the coefficient of $x^{k} y^{n-k}$ in $(x+y)^{n}$.
(c) $\binom{n}{n}=1,\binom{n}{0}=1$ and, if $1 \leq k \leq n-1$ then

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

The exponential function is the element e^{x} of $\mathbb{Q}[[x]]$ given by

$$
e^{x}=\sum_{k \in \mathbb{Z}_{\geq 0}} \frac{x^{k}}{k!}
$$

Theorem 1.2. As elements of $\mathbb{Q}[[x, y]]$,

$$
e^{x} e^{y}=e^{(x+y)}
$$

Define

$$
\ln (1+x)=\sum_{k \in \mathbb{Z}_{>0}}(-1)^{k-1} \frac{x^{k}}{k}
$$

Theorem 1.3. Let

$$
G=\{p(x) \in \mathbb{F}[[x]] \mid p(0)=1\} \quad \text { and } \quad \mathfrak{g}=\{p(x) \in \mathbb{F}[[x]] \mid p(0)=0\} .
$$

(a) $\ln \left(1+\left(e^{x}-1\right)\right)=e^{\ln (1+x)}-1=x$.
(b) G is an abelian group under multiplication, \mathfrak{g} is a commutative group under addition and

$$
\begin{array}{rlc}
G & \longrightarrow & \mathfrak{g} \\
p & \longmapsto & e^{p}-1
\end{array}
$$

is an isomorphism of groups.

