Math 521: Lecture 9

Arun Ram
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706
ram@math.wisc.edu

1 Derivations

Let \mathbb{F} be a field. A vector space over \mathbb{F} is an abelian group V with a map

$$
\begin{array}{rlc}
\mathbb{F} \times V & \longrightarrow & V \\
(c, v) & \longmapsto c & c v
\end{array}
$$

such that
(a) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $\left(c_{1}+c_{2}\right) v=c_{1} v+c_{2} v$,
(b) If $c \in \mathbb{F}$ and $v_{1}, v_{2} \in V$ then $c\left(v_{1}+v_{2}\right)=c v_{1}+c v_{2}$,
(c) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $c_{1}\left(c_{2} v\right)=\left(c_{1} c_{2}\right) v$,
(d) If $v \in V$ then $1 \cdot v=v$.

Let \mathbb{F} be a field. Let V, W be vector spaces over \mathbb{F}. An \mathbb{F}-linear map from V to W is a function $\varphi: V \rightarrow W$ such that
(a) φ is a group homomorphism,
(b) If $c \in \mathbb{F}$ and $v \in V$ then $\varphi(c v)=c \varphi(v)$.

Let \mathbb{F} be a field. An algebra is a vector space A over \mathbb{F} with an operation

$$
\begin{array}{ccc}
A \times A & \longrightarrow & A \\
\left(a_{1}, a_{2}\right) & \longmapsto & a_{1} a_{2}
\end{array}
$$

such that A is a ring and the scalar multiplication is the composition of the map

$$
\begin{array}{rlc}
\mathbb{F} & \longrightarrow & A \\
\xi & \longmapsto & \xi \cdot 1
\end{array}
$$

and the multiplication in A.
Let \mathbb{F} be a field. Let A be an \mathbb{F}-algebra. A derivation of A is an \mathbb{F}-linear map $d: A \rightarrow A$ such that

$$
\text { if } \quad a_{1}, a_{2} \in A \quad \text { then } \quad d\left(a_{1} a_{2}\right)=a_{1} d\left(a_{2}\right)+d\left(a_{1}\right) a_{2} .
$$

Theorem 1.1. (a) There is a unique derivation $\frac{d}{d x}$ of $\mathbb{F}[x]$ such that $\frac{d x}{d x}=1$.
(b) If $p \in \mathbb{F}[x]$ then

$$
\frac{d p}{d x}=(\text { coefficient of } y \text { in } p(x+y)) .
$$

(c) If $p \in \mathbb{F}[x]$ then

$$
p=\sum_{k \in \mathbb{Z} \geq 0}\left(\left(\frac{d}{d x}\right)^{k} p\right)(0) x^{k} .
$$

(d) There is a unique extension of $\frac{d}{d x}$ to a derivation of $\mathbb{F}(x)$.
(e) There is a unique extension of $\frac{d}{d x}$ to a derivation of $\mathbb{F}[[x]]$.
(f) There is a unique extension of $\frac{d}{d x}$ to a derivation of $\mathbb{F}((x))$.
(g) If $p \in \mathbb{F}[[x]]$ then

$$
\frac{d p}{d x}=(\text { coefficient of } y \text { in } p(x+y))
$$

(h) If $p \in \mathbb{F}[[x]]$ then

$$
p=\sum_{k \in \mathbb{Z} \geq 0}\left(\left(\frac{d}{d x}\right)^{k} p\right)(0) x^{k} .
$$

