Math 521: Lecture 9

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Derivations

Let \mathbb{F} be a field. A vector space over \mathbb{F} is an abelian group V with a map

$$\begin{array}{cccc} \mathbb{F} \times V & \longrightarrow & V \\ (c,v) & \longmapsto & cv \end{array}$$

such that

- (a) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $(c_1 + c_2)v = c_1v + c_2v$,
- (b) If $c \in \mathbb{F}$ and $v_1, v_2 \in V$ then $c(v_1 + v_2) = cv_1 + cv_2$,
- (c) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $c_1(c_2v) = (c_1c_2)v$,
- (d) If $v \in V$ then $1 \cdot v = v$.

Let \mathbb{F} be a field. Let V, W be vector spaces over \mathbb{F} . An \mathbb{F} -linear map from V to W is a function $\varphi \colon V \to W$ such that

- (a) φ is a group homomorphism,
- (b) If $c \in \mathbb{F}$ and $v \in V$ then $\varphi(cv) = c\varphi(v)$.

Let \mathbb{F} be a field. An **algebra** is a vector space A over \mathbb{F} with an operation

$$\begin{array}{cccc} A \times A & \longrightarrow & A \\ (a_1, a_2) & \longmapsto & a_1 a_2 \end{array}$$

such that A is a ring and the scalar multiplication is the composition of the map

$$\begin{array}{cccc} \mathbb{F} & \longrightarrow & A \\ \xi & \longmapsto & \xi \cdot 1 \end{array}$$

and the multiplication in A.

Let \mathbb{F} be a field. Let A be an \mathbb{F} -algebra. A **derivation** of A is an \mathbb{F} -linear map $d: A \to A$ such that

if
$$a_1, a_2 \in A$$
 then $d(a_1a_2) = a_1d(a_2) + d(a_1)a_2$.

Theorem 1.1. (a) There is a unique derivation $\frac{d}{dx}$ of $\mathbb{F}[x]$ such that $\frac{dx}{dx} = 1$.

(b) If $p \in \mathbb{F}[x]$ then

$$\frac{dp}{dx} = (coefficient of y in p(x+y)).$$

(c) If $p \in \mathbb{F}[x]$ then

$$p = \sum_{k \in \mathbb{Z}_{\geq 0}} \left(\left(\frac{d}{dx} \right)^k p \right) (0) x^k.$$

(d) There is a unique extension of $\frac{d}{dx}$ to a derivation of $\mathbb{F}(x)$.

- (e) There is a unique extension of $\frac{d}{dx}$ to a derivation of $\mathbb{F}[[x]]$.
- (f) There is a unique extension of $\frac{d}{dx}$ to a derivation of $\mathbb{F}((x))$.
- (g) If $p \in \mathbb{F}[[x]]$ then

$$\frac{dp}{dx} = (coefficient of y in p(x+y)).$$

(h) If $p \in \mathbb{F}[[x]]$ then

$$p = \sum_{k \in \mathbb{Z}_{\geq 0}} \left(\left(\frac{d}{dx} \right)^k p \right) (0) x^k.$$