Numbers

Arun Ram Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Version: May 20, 2004

Calculus is the study of

- (1) Derivatives
- (2) Integrals
- (3) Applications of derivatives
- (4) Applications of integrals

A *derivative* is a creature you put a function into, it chews on it, and spits out a new function. A *function* takes in a number, chews on it, and spits out a new number.

Derivatives		Functions
$\begin{array}{ccc} \text{input} & \longrightarrow & \frac{d}{dx} \\ \text{function} & \longrightarrow & \frac{d}{dx} \end{array}$	\longrightarrow output function	$\begin{array}{ccc} \operatorname{input} & \longrightarrow & f & \longrightarrow & \operatorname{output} \\ \operatorname{number} & \longrightarrow & f & \longrightarrow & \operatorname{number} \end{array}$

The *integral* is the derivative backwards:

Numbers are at the bottom of the food chain.

At some point humankind wanted to count things and discovered the **positive integers**,

 $1, 2, 3, 4, 5, \ldots$

GREAT for counting something,

BUT what if you don't have anything? How do we talk about nothing, nulla, zilch? ... and so we discovered the **nonnegative integers**,

$$0, 1, 2, 3, 4, 5, \ldots$$

GREAT for adding,

5+3=8, 0+10=10, 21+37=48,

BUT not so great for subtraction,

$$5-3=2, \ 2-0=2, \ 12-34=???.$$

... and so we discovered the **integers**

 $\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$

GREAT for adding, subtracting and multiplying,

 $3 \cdot 6 = 18, -3 \cdot 2 = -6, 0 \cdot 7 = 0,$

BUT not so great if you only want part of the sausage ..., ... and so we discovered the **rational numbers**,

$$\frac{a}{b}$$
, a an integer, b an integer, $b \neq 0$.

GREAT for addition, subtraction, multiplication, and division, BUT not so great for finding $\sqrt{2} = ????$,

... and so we discovered the **real numbers**,

all decimal expansions.

Examples:

$$\pi = 3.1415926...,$$

$$e = 2.71828...,$$

$$\sqrt{2} = 1.414...,$$

$$10 = 10.0000...,$$

$$\frac{1}{3} = .3333...,$$

$$\frac{1}{8} = .125 = .125000000...,$$

GREAT for addition, subtraction, multiplication, and division,

BUT not so great for finding $\sqrt{-9} = ????$,

... and so we discovered the **complex numbers**,

a + bi, a a real number, b a real number, $i = \sqrt{-1}$.

Examples: $3 + \sqrt{2}i$, 6 = 6 + 0i, $\pi + \sqrt{7}i$,

and

$$\sqrt{-9} = \sqrt{9(-1)} = \sqrt{9}\sqrt{-1} = 3i.$$

GREAT.

Addition: (3+4i) + (7+9i) = 3+7+4i+9i = 10+13i.Subtraction: (3+4i) - (7+9i) = 3-7+4i-9i = -4-5i.Multiplication: (2+4i)(7+9i) = 2(7+9i) + 4i(7+9i)

$$(3+4i)(7+9i) = 3(7+9i) + 4i(7+9i)$$

= 21 + 27i + 28i + 36i²
= 21 + 55i - 36
= -15 + 55i.

Division:

$$\frac{3+4i}{7+9i} = \frac{(3+4i)}{(7+9i)} \frac{(7-9i)}{(7-9i)} = \frac{21-27i+28i+36}{49-63i+63i+81}$$

$$=\frac{57+i}{130}=\frac{57}{130}+\frac{1}{130}i.$$

Square Roots: We want $\sqrt{-3+4i}$ to be some a+bi.

If
$$\sqrt{-3+4i} = a+bi$$

then

$$-3 + 4i = (a + bi)^2 = a^2 + abi + abi + b^2i^2$$
$$= a^2 - b^2 + 2abi.$$

 So

 $a^2 - b^2 = -3$ and 2ab = 4.

Solve for a and b.

$$b = \frac{4}{2a} = \frac{2}{a}.$$
 So $a^2 - \left(\frac{2}{a}\right)^2 = -3.$
So $a^2 - \frac{4}{a^2} = -3.$
So $a^4 - 4 = -3a^2.$
So $a^4 + 3a^2 - 4 = 0.$
So $(a^2 + 4)(a^2 - 1) = 0.$

So $a^2 = -4$ or $a^2 = 1$. So $a = \pm 1$, and $b = \frac{2}{\pm 1} = 2$ or -2. So a + bi = 1 + 2i or a + bi = -1 - 2i. So $\sqrt{-3 + 4i} = \pm (1 + 2i)$.

Graphing:

Factoring:

$$x^{2} + 5 = (x + \sqrt{5}i)(x - \sqrt{5}i),$$

$$x^{2} + x + 1 = \left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)$$

This is REALLY why we like the complex numbers. The **fundamental theorem of algebra** says that ANY POLYNOMIAL (for example, $x^{12673} + 2563x^{159} + \pi x^{121} + \sqrt{7}x^{23} + 9621\frac{1}{2}$) can be factored completely as

$$(x-u_1)(x-u_2)\cdots(x-u_n)$$

where u_1, \ldots, u_n are complex numbers.