$\S 1 E$. Sets

1. DeMorgan's Laws. Let A, B, and C be sets. Show that
a) $(A \cup B) \cup C=A \cup(B \cup C)$.
b) $A \cup B=B \cup A$.
c) $A \cup \emptyset=A$.
d) $(A \cap B) \cap C=A \cap(B \cap C)$.
e) $A \cap B=B \cap A$.
f) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

§2E. Functions

1. Let S, T, and U be sets and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. Show that
a) If f and g are injective then $g \circ f$ is injective.
b) If f and g are surjective then $g \circ f$ is surjective.
c) If f and g are bijective then $g \circ f$ is bijective.
2. Let $f: S \rightarrow T$ be a function and let $U \subseteq S$. The image of U under f is the subset of T given by

$$
f(U)=\{f(u) \mid u \in U\}
$$

Let $f: S \rightarrow T$ be a function. The image of f is the subset of T given by

$$
\operatorname{im} f=\{f(s) \mid s \in S\} .
$$

Note that $\operatorname{im} f=f(S)$.

Let $f: S \rightarrow T$ be a function and let $V \subseteq T$. The inverse image of V under f is the subset of S given by

$$
f^{-1}(V)=\{s \in S \mid f(s) \in V\}
$$

Let $f: S \rightarrow T$ be a function and let $t \in T$. The fiber of f over t is the subset of S given by

$$
f^{-1}(t)=\{s \in S \mid f(s)=t\}
$$

Note that $f^{-1}(t)=f^{-1}(\{t\})$.

Let $f: S \rightarrow T$ be a function. Show that the set $F=\left\{f^{-1}(t) \mid t \in T\right\}$ of fibers of the map f is a partition of S.
3. a) Let $f: S \rightarrow T$ be a function. Define

$$
\begin{aligned}
f^{\prime}: \quad S & \rightarrow \\
& \operatorname{im} f \\
s & \mapsto
\end{aligned} f(s) .
$$

Show that the map f^{\prime} is well defined and surjective.
b) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}: & F & \rightarrow & T \\
f^{-1}(t) & \mapsto & t .
\end{array}
$$

Show that the map \hat{f} is well defined and injective.
c) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}^{\prime}: & F & \rightarrow & \operatorname{im} f \\
f^{-1}(t) & \mapsto & t .
\end{array}
$$

Show that the map \hat{f}^{\prime} is well defined and bijective.
4. Let S be a set. The power set of $S, 2^{S}$, is the set of all subsets of S.

Let S be a set and let $\{0,1\}^{S}$ be the set of all functions $f: S \rightarrow\{0,1\}$. Given a subset $T \subseteq S$ define a function $f_{T}: S \rightarrow\{0,1\}$ by

$$
f_{T}(s)= \begin{cases}0 & \text { if } s \notin T \\ 1 & \text { if } s \in T\end{cases}
$$

Show that the map

$$
\left.\begin{array}{rl}
\psi: \quad 2^{S} & \rightarrow \\
T & \mapsto
\end{array} f_{T}, 1\right\}^{S}
$$

is a bijection.
5. Let $\circ: S \times S \rightarrow S$ be an associative operation on a set S. An identity for \circ is an element $e \in S$ such that $e \circ s=s \circ e=s$, for all $s \in S$.

Let e be an identity for an associative operation o on a set S. Let $s \in S$. A left inverse for s is an element $t \in S$ such that $t \circ s=e$. A right inverse for s is an element $t^{\prime} \in S$ such that $s \circ t^{\prime}=e$. An inverse for s is an element $s^{-1} \in S$ such that $s \circ s^{-1}=s^{-1} \circ s=e$.
a) Let \circ be an operation on a set S. Show that if S contains an identity for \circ then it is unique.
b) Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. Show that if s has an inverse then it is unique.
6. a) Let S and T be sets and let ι_{S} and ι_{T} be the identity maps on S and T respectively. Show that for any function $f: S \rightarrow T$,

$$
\begin{aligned}
\iota_{T} \circ f & =f, \quad \text { and } \\
f \circ \iota_{S} & =f .
\end{aligned}
$$

b) Let $f: S \rightarrow T$ be a function. Show that if an inverse function to f exists then it is unique. (Hint: The proof is very similar to the proof in Ex. 5b.)

§1P. Sets

1. DeMorgan's Laws. Let A, B, and C be sets. Show that
a) $(A \cup B) \cup C=A \cup(B \cup C)$.
b) $A \cup B=B \cup A$.
c) $A \cup \emptyset=A$.
d) $(A \cap B) \cap C=A \cap(B \cap C)$.
e) $A \cap B=B \cap A$.
f) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof.
a) To show: aa) $(A \cup B) \cup C \subseteq A \cup(B \cup C)$.
ab) $A \cup(B \cup C) \subseteq(A \cup B) \cup C$.
aa) Let $x \in(A \cup B) \cup C$.
Then $x \in A \cup B$ or $x \in C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A$ or $x \in B \cup C$.
So $x \in A \cup(B \cup C)$.
So $(A \cup B) \cup C \subseteq A \cup(B \cup C)$.
ab) Let $x \in A \cup(B \cup C)$.
Then $x \in A$ or $x \in B \cup C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A \cup B$ or $x \in C$.
So $x \in(A \cup B) \cup C$.
So $A \cup(B \cup C) \subseteq(A \cup B) \cup C$.
So $(A \cup B) \cup C=A \cup(B \cup C)$.
b) To show: ba) $A \cup B \subseteq B \cup A$.
bb) $B \cup A \subseteq A \cup B$.
ba) Let $x \in A \cup B$.
Then $x \in A$ or $x \in B$.
So $x \in B$ or $x \in A$.
So $x \in B \cup A$.
So $A \cup B \subseteq B \cup A$.
bb) Let $x \in B \cup A$.
Then $x \in B$ or $x \in A$.
So $x \in A$ or $x \in B$.
So $x \in A \cup B$.
So $B \cup A \subseteq A \cup B$.
So $A \cup B=B \cup A$.
c) To show: ca) $A \cup \emptyset \subseteq A$.
cb) $A \subseteq A \cup \emptyset$.
ca) Proof by contradiction.
Assume $A \cup \emptyset \nsubseteq A$.
Then there exists $x \in A \cup \emptyset$ such that $x \notin A$.
So $x \in \emptyset$.
This is a contradiction to the definition of empty set.
So $A \cup \emptyset \subseteq A$.
cb) Let $x \in A$.
Then $x \in A$ or $x \in \emptyset$.
So $x \in A \cup \emptyset$.
So $A \subseteq A \cup \emptyset$.

So $A \cup \emptyset=A$.
d) To show: da) $(A \cap B) \cap C \subseteq A \cap(B \cap C)$.
db) $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
da) Let $x \in(A \cap B) \cap C$.
Then $x \in A \cap B$ and $x \in C$.
So $x \in A$ and $x \in B$ and $x \in C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A \cap(B \cap C)$.
So $(A \cap B) \cap C \subseteq A \cap(B \cap C)$.
db) Let $x \in A \cap(B \cap C)$.
Then $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B$ and $x \in C$.
So $x \in A \cap B$ and $x \in C$.
So $x \in(A \cap B) \cap C$.
So $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
So $(A \cap B) \cap C=A \cap(B \cap C)$.
e) To show: ea) $A \cap B \subseteq B \cap A$.
eb) $B \cap A \subseteq A \cap B$.
ea) Let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
So $x \in B$ and $x \in A$.
So $x \in B \cap A$.
So $A \cap B \subseteq B \cap A$.
eb) Let $x \in B \cap A$.
Then $x \in B$ and $x \in A$.
So $x \in A$ and $x \in B$.
So $x \in A \cap B$.
So $B \cap A \subseteq A \cap B$.
So $A \cap B=B \cap A$.
f) To show: fa) $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
fb) $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$.
fa) Let $x \in A \cap(B \cup C)$.
Then $x \in A$ and $x \in B \cup C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$.
So $x \in A \cap B$ or $x \in A \cap C$.
So $x \in(A \cap B) \cup(A \cap C)$.
So $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
fb) Let $x \in(A \cap B) \cup(A \cap C)$.
Then $x \in A \cap B$ or $x \in A \cap C$.
So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$.
So $x \in A$ and, $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B \cup C$.
So $x \in A \cap(B \cup C)$.
So $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$.
So $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(2.2.3) Proposition. Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Proof.
\Longrightarrow : Assume $f: S \rightarrow T$ has an inverse function $f^{-1}: T \rightarrow S$.
To show: a) f is injective.
b) f is surjective.
a) Assume $f\left(s_{1}\right)=f\left(s_{2}\right)$.

To show: $s_{1}=s_{2}$.

$$
s_{1}=f^{-1}\left(f\left(s_{1}\right)\right)=f^{-1}\left(f\left(s_{2}\right)\right)=s_{2} .
$$

So f is injective.
b) Let $t \in T$.

To show: There exists $s \in S$ such that $f(s)=t$.
Let $s=f^{-1}(t)$.
Then

$$
f(s)=f\left(f^{-1}(t)\right)=t
$$

So f is surjective.
So f is bijective.
\Longleftarrow : Assume $f: S \rightarrow T$ is bijective.
To show: f has an inverse function.
We need to define a function $\varphi: T \rightarrow S$.
Let $t \in T$.
Since f is surjective there exists $s \in S$ such that $f(s)=t$.
Define $\varphi(t)=s$.
To show: a) φ is well defined.
b) φ is an inverse function to f.
a) To show: aa) If $t \in T$ then $\varphi(t) \in S$.
ab) If $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
aa) It is clear from the definition that $\varphi(t) \in S$.
ab) To show: If $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
Assume $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$.
Let $s_{1}, s_{2} \in S$ such that $f\left(s_{1}\right)=t_{1}$ and $f\left(s_{2}\right)=t_{2}$.
Since $t_{1}=t_{2}, f\left(s_{1}\right)=f\left(s_{2}\right)$.
Since f is injective this implies that $s_{1}=s_{2}$.
So $\varphi\left(t_{1}\right)=s_{1}=s_{2}=\varphi\left(t_{2}\right)$.
So φ is well defined.
b) To show: ba) If $s \in S$ then $\varphi(f(s))=s$.
bb) If $t \in T$ then $f(\varphi(t))=t$.
ba) This is immediate from the definition of φ.
bb) Assume $t \in T$.
Let $s \in S$ be such that $f(s)=t$.
Then

$$
f(\varphi(t))=f(s)=t
$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T respectively.
So φ is an inverse function to f.

(2.2.7) Proposition.

a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
b) Let S be a set and let $\left\{S_{\alpha}\right\}$ be a partition of S. Then the relation defined by

$$
s \sim t, \text { if } s, t \text { are in the same } S_{\alpha},
$$

is an equivalence relation on S.
Proof.
a) To show: aa) If $s \in S$ then s is in some equivalence class.
ab) If $[s] \cap[t] \neq \emptyset$ then $[s]=[t]$.
aa) Let $s \in S$.
Since $s \sim s, s \in[s]$.
ab) Assume $[s] \cap[t] \neq \emptyset$.
To show: $[s]=[t]$.
Since $[s] \cap[t] \neq 0$, there is an $r \in[s] \cap[t]$.
So $s \sim r$ and $r \sim t$.
By transitivity, $s \sim t$.
To show: aba) $[s] \subseteq[t]$
abb) $[t] \subseteq[s]$.
aba) Suppose $u \in[s]$.
Then $u \sim s$.
We know $s \sim t$.
So, by transitivity, $u \sim t$.
Therefore $u \in[t]$.
So $[s] \subseteq[t]$.
abb) Suppose $v \in[t]$.
Then $v \sim t$.
We know $t \sim s$.
So, by transitivity, $v \sim s$.
Therefore $v \in[s]$.
So $[t] \subseteq[s]$.
So $[s]=[t]$.
So the equivalence classes form a partition of S.
b) We must show that \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric, and transitive.

To show: ba) $s \sim s$ for all $s \in S$.
bb) If $s \sim t$ then $t \sim s$.
bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
ba) s and s are in the same S_{α} so $s \sim s$.
bb) Assume $s \sim t$.
Then s and t are in the same S_{α}.
So $t \sim s$.
bc) Assume $s \sim t$ and $t \sim u$.
Then s and t are in the same S_{α} and t and u are in the same S_{α}.
So s and u are in the same S_{α}.
So $s \sim u$.
So \sim is an equivalence relation.

1. Let S, T, U be sets and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions.
a) If f and g are injective then $g \circ f$ is injective.
b) If f and g are surjective then $g \circ f$ is surjective.
c) If f and g are bijective then $g \circ f$ is bijective.

Proof.

a) Assume f and g are injective.

To show: If $s_{1}, s_{2} \in S$ and $(g \circ f)\left(s_{1}\right)=(g \circ f)\left(s_{2}\right)$ then $s_{1}=s_{2}$.
Assume $s_{1}, s_{2} \in S$ and $(g \circ f)\left(s_{1}\right)=(g \circ f)\left(s_{2}\right)$.
Then

$$
g\left(f\left(s_{1}\right)\right)=g\left(f\left(s_{2}\right)\right)
$$

Thus, since g is injective, $f\left(s_{1}\right)=f\left(s_{2}\right)$.
Thus, since f is injective, $s_{1}=s_{2}$.
So $g \circ f$ is injective.
b) Assume f and g are surjective.

To show: If $u \in U$ then there exists $s \in S$ such that $(g \circ f)(s)=u$.
Assume $u \in U$.
Since g is surjective there exists $t \in T$ such that $g(t)=u$.
Since f is surjective there exists $s \in S$ such that $f(s)=t$.
So

$$
\begin{aligned}
(g \circ f)(s) & =g(f(s)) \\
& =g(t) \\
& =u .
\end{aligned}
$$

So there exists $s \in S$ such that $(g \circ f)(s)=u$.
So $g \circ f$ is surjective.
c) Assume f and g are bijective.

To show: ca) $g \circ f$ is injective.
cb) $g \circ f$ is surjective.
ca) Since f and g are bijective, f and g are injective.
Thus, by a), $g \circ f$ is injective.
cb) Since f and g are bijective, f and g are surjective.
Thus, by b), $g \circ f$ is surjective.
So $g \circ f$ is bijective.
2. Let $f: S \rightarrow T$ be a function. Then the set $F=\left\{f^{-1}(t) \mid t \in T\right\}$ of fibers of the map f is a partition of S.

Proof.
To show: a) If $s^{\prime} \in S$ then $s^{\prime} \in f^{-1}(t)$ for some $t \in T$.
b) If $f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right) \neq \emptyset$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
a) Assume $s^{\prime} \in S$.

Then $f^{-1}\left(f\left(s^{\prime}\right)\right)=\left\{s \in S \mid f(s)=f\left(s^{\prime}\right)\right\}$.
Since $f\left(s^{\prime}\right)=f\left(s^{\prime}\right), s^{\prime} \in f^{-1}\left(f\left(s^{\prime}\right)\right)$.
b) Assume $f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right) \neq \emptyset$.

Let $s \in f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right)$.
So $f(s)=t_{1}$ and $f(s)=t_{2}$.
To show: $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
To show: ba) $f^{-1}\left(t_{1}\right) \subseteq f^{-1}\left(t_{2}\right)$.
bb) $f^{-1}\left(t_{2}\right) \subseteq f^{-1}\left(t_{1}\right)$.
ba) Let $k \in f^{-1}\left(t_{1}\right)$.
Then $f(k)=t_{1}$

$$
=f(s)
$$

$$
=t_{2}
$$

So $k \in f^{-1}\left(t_{2}\right)$.
So $f^{-1}\left(t_{1}\right) \subseteq f^{-1}\left(t_{2}\right)$.
bb) Let $h \in f^{-1}\left(t_{2}\right)$.
Then $f(k)=t_{2}$

$$
=f(s)
$$

$$
=t_{1}
$$

So $h \in f^{-1}\left(t_{1}\right)$.
So $f^{-1}\left(t_{2}\right) \subseteq f^{-1}\left(t_{1}\right)$.
So $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
So the set $F=\left\{f^{-1}(t) \mid t \in T\right\}$ of fibers of the map f is a partition of S.
3. a) Let $f: S \rightarrow T$ be a function. Define

$$
\begin{aligned}
f^{\prime}: & S
\end{aligned} \rightarrow \operatorname{im} f 0 .
$$

Then the map f^{\prime} is well defined and surjective.
b) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}: & F & \rightarrow & T \\
f^{-1}(t) & \mapsto & t .
\end{array}
$$

Then the map \hat{f} is well defined and injective.
c) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}^{\prime}: & F & \rightarrow & \operatorname{im} f \\
f^{-1}(t) & \mapsto & t .
\end{array}
$$

Then the map \hat{f}^{\prime} is well defined and bijective.
Proof.
a) To show: aa) f^{\prime} is well defined.
ab) f^{\prime} is surjective.
aa) To show: aaa) If $s \in S$ then $f^{\prime}(s) \in \operatorname{im} f$.
aab) If $s_{1}=s_{2}$ then $f^{\prime}\left(s_{1}\right)=f^{\prime}\left(s_{2}\right)$.
aaa) Assume $s \in S$.
Then $f^{\prime}(s)=f(s) \in \operatorname{im} f$ by definition of f^{\prime} and $\operatorname{im} f$.
aab) Assume $s_{1}=s_{2}$.
Then, by definition of f^{\prime},

$$
f^{\prime}\left(s_{1}\right)=f\left(s_{1}\right)=f\left(s_{2}\right)=f^{\prime}\left(s_{2}\right)
$$

So f^{\prime} is well defined.
ab) To show: If $t \in \operatorname{im} f$ then there exists $s \in S$ such that $f^{\prime}(s)=t$.
Assume $t \in \operatorname{im} f$.
Then $f(s)=t$ for some $s \in S$.
So $f^{\prime}(s)=f(s)=t$.

So f^{\prime} is surjective.
b) To show: ba) \hat{f} is well defined.
bb) \hat{f} is injective.
ba) To show: baa) If $f^{-1}(t) \in F$ then $\hat{f}\left(f^{-1}(t)\right) \in T$.
bab) If $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$ then $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$.
baa) Assume $f^{-1}(t) \in F$.
Then $\hat{f}\left(f^{-1}(t)\right)=t \in T$, by definition.
bab) Assume $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Let $s \in f^{-1}\left(t_{1}\right)$.
Then $s \in f^{-1}\left(t_{2}\right)$ also. So $t_{1}=f(s)=t_{2}$.
Then

$$
\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=t_{1}=t_{2}=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)
$$

So \hat{f} is well defined.
bb) To show: If $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Assume $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$.
Then $t_{1}=t_{2}$.
To show: $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
This is clearly true since $t_{1}=t_{2}$.
So \hat{f} is injective.
c) By Ex. 2.2.3 b), the function

$$
\begin{array}{cccc}
\hat{f}: & F & \rightarrow & T \\
f^{-1}(t) & \mapsto & t
\end{array}
$$

is well defined and injective.
By Ex. 2.2.3 a), the function

$$
\begin{array}{cccc}
\hat{f}^{\prime}: & F & \rightarrow \quad \operatorname{im} \hat{f} \\
& f^{-1}(t) & \mapsto & t
\end{array}
$$

is well defined and surjective.
To show: ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) \hat{f}^{\prime} is injective.
ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
caa) Assume $t \in \operatorname{im} \hat{f}$.
Then $f^{-1}(t)$ is nonempty.
So there exists $s \in S$ such that $f(s)=t$.
So $t \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) Assume $t \in \operatorname{im} f$.
Then there exists $s \in S$ such that $f(s)=t$.
So $f^{-1}(t) \neq \emptyset$.
So $t \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) To show: If $\left.\hat{f}^{\prime}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}^{\prime}\left(f^{-1} t_{2}\right)\right)$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Assume $\hat{f}^{\prime}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}^{\prime}\left(f^{-1}\left(t_{2}\right)\right)$.

$$
\begin{aligned}
& \text { So } t_{1}=t_{2} \text {. } \\
& \text { So } f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right) \text {. }
\end{aligned}
$$

So \hat{f}^{\prime} is injective.
So \hat{f}^{\prime} is well defined and bijective.
4. Let S be a set and let $\{0,1\}^{S}$ be the set of all functions $f: S \rightarrow\{0,1\}$. Given a subset $T \subseteq S$ define a function $f_{T}: S \rightarrow\{0,1\}$ by

$$
f_{T}(s)= \begin{cases}0 & \text { if } s \notin T \\ 1 & \text { if } s \in T\end{cases}
$$

Then the map

$$
\begin{array}{rccc}
\psi: \quad 2^{S} & \rightarrow & \{0,1\}^{S} \\
T & \mapsto & f_{T}
\end{array}
$$

is a bijection.
Proof.
To show: a) ψ is well defined.
b) ψ is bijective.
a) To show: aa) If $T \in 2^{S}$ then $\psi(T)=f_{T} \in\{0,1\}^{S}$.
ab) If T_{1} and T_{2} are subsets of S and $T_{1}=T_{2}$ then $\psi\left(T_{1}\right)=\psi\left(T_{2}\right)$.
aa) It is clear from the definition of f_{T} that $z z / p s i(T)=f_{T}$ is a function from S to $\{0,1\}$.
ab) Assume T_{1} and T_{2} are subsets of S and $T_{1}=T_{2}$.
To show: $\psi\left(T_{1}\right)=\psi\left(T_{2}\right)$.
To show: $f_{T_{1}}=f_{T_{2}}$.
To show: If $s \in S$ then $f_{T_{1}}(s)=f_{T_{2}}(s)$.
Assume $s \in S$.
Case 1: If $s \in T_{1}$ then, since $T_{1}=T_{2}, s \in T_{2}$.
So

$$
f_{T_{1}}(s)=1=f_{T_{2}}(s) .
$$

Case 2: If $s \notin T_{1}$ then, since $T_{1}=T_{2}, s \notin T_{2}$.
So

$$
f_{T_{1}}(s)=0=f_{T_{2}}(s)
$$

So $f_{T_{1}}(s)=f_{T_{2}}(s)$ for all $s \in S$.
So $f_{T_{1}}=f_{T_{2}}$.
So $\psi\left(T_{1}\right)=f_{T_{1}}=f_{T_{2}}=\psi\left(T_{2}\right)$.
So ψ is well defined.
b) By virtue of Proposition 2.2 .3 we would like to show: $\psi: 2^{S} \rightarrow\{0,1\}^{S}$ has an inverse function.
Given a function $f: S \rightarrow\{0,1\}$ define

$$
T_{f}=\{s \in S \mid f(s)=1\}
$$

Define a function $\varphi:\{0,1\}^{S} \rightarrow 2^{S}$ by

$$
\begin{aligned}
\varphi: \quad\{0,1\}^{S} & \rightarrow 2^{S} \\
f & \mapsto T_{f} .
\end{aligned}
$$

To show: ba) φ is well defined.
bb) φ is an inverse function to ψ.
ba) To show: baa) If $f \in\{0,1\}^{S}$ then $\varphi(f)=T_{f} \in 2^{S}$.
bab) If $f_{1}, f_{2} \in\{0,1\}^{S}$ and $f_{1}=f_{2}$ then

$$
\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)
$$

baa) By definition, $T_{f}=\{s \in S \mid f(s)=1\}$ is a subset of S.
bab) Assume $f_{1}, f_{2} \in\{0,1\}^{S}$ and $f_{1}=f_{2}$.
To show: $\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)$.
To show: $T_{f_{1}}=T_{f_{2}}$.
To show: baba) $T_{f_{1}} \subseteq T_{f_{2}}$.
babb) $T_{f_{2}} \subseteq T_{f_{1}}$.
baba) Assume $s \in T_{f_{1}}$.
Then $f_{1}(s)=1$.
Since $f_{2}(s)=f_{1}(s), f_{2}(s)=1$.
Thus $s \in T_{f_{2}}$.
So $T_{f_{1}} \subseteq T_{f_{2}}$.
babb) Assume $s \in T_{f_{2}}$.
Then $f_{2}(s)=1$.
Since $f_{1}(s)=f_{2}(s), f_{1}(s)=1$.
Thus $s \in T_{f_{1}}$.
So $T_{f_{2}} \subseteq T_{f_{1}}$.
So $T_{f_{1}}=T_{f_{2}}$.
So $\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)$.
So φ is well defined.
bb) To show: bba) If $T \in 2^{S}$ then $\varphi(\psi(T))=T$.
bbb) If $f \in\{0,1\}^{S}$ then $\psi(\varphi(f))=f$.
bba) Assume $T \subseteq S$.
To show: $\varphi(\psi(T))=T$.
To show: $T_{f_{T}}=T$.
To show: bbaa) $T_{f_{T}} \subseteq T$.
bbab) $T \subseteq T_{f_{T}}$.
bbaa) Assume $t \in T_{f_{T}}$.
Then $f_{T}(t)=1$.
So $t \in T$.
So $T_{f_{T}} \subseteq T$.
bbab) Assume $t \in T$.
Then $f_{T}(t)=1$.
So $t \in T_{f_{T}}$.
So $T \subseteq T_{f_{T}}$.
So $T_{f_{T}}=T$.
So $\varphi(\psi(T))=T$.
bbb) Assume $f \in\{0,1\}^{S}$.
To show: $\psi(\varphi(f))=f$.
By definition, $\psi(\varphi(f))=f_{T_{f}}$.
To show: If $s \in S$ then $f_{T_{f}}(s)=f(s)$.
Assume $s \in S$.
Case 1: $f(s)=1$.
Then $s \in T_{f}$.

$$
\begin{aligned}
& \text { So } f_{T_{f}}(s)=1 . \\
& \text { So } f_{T_{f}}(s)=f(s) . \\
& \text { Case 2: } f(s)=0 . \\
& \text { Then } s \notin T_{f} \\
& \text { So } f_{T_{f}}(s)=0 \\
& \text { So } f_{T_{f}}(s)=f(s) . \\
& \text { So } f_{T_{f}}(s)=f(s) \text {. }
\end{aligned}
$$

So φ is an inverse function to ψ.
So ψ is bijective.
5. a) Let \circ be an operation on a set S. If S contains an identity for \circ then it is unique.
b) Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. If s has an inverse then it is unique.

Proof.
a) Let $e, e^{\prime} \in S$ be identities for \circ.

Then $e \circ e^{\prime}=e$, since e^{\prime} is an identity, and $e \circ e^{\prime}=e^{\prime}$, since e is an identity.
So $e=e^{\prime}$.
b) Assume $t, u \in S$ are both inverses for s.

By associativity of $\circ, u=(t \circ s) \circ u=t \circ(s \circ u)=t$.
6. a) Let S and T be sets and let ι_{S} and ι_{T} be the identity maps on S and T respectively.

For any function $f: S \rightarrow T$,

$$
\begin{aligned}
& \iota_{T} \circ f=f, \quad \text { and } \\
& f \circ \iota_{S}=f .
\end{aligned}
$$

b) Let $f: S \rightarrow T$ be a function. If an inverse function to f exists then it is unique.

Proof.
a) Assume $f: S \rightarrow T$ is a function.

To show: aa) $\iota_{T} \circ f=f$.
ab) $f \circ \iota_{S}=f$.
To show: aa) If $s \in S$ then $\iota_{T}(f(s))=f(s)$.
ab) If $s \in S$ then $f\left(\iota_{S}(s)\right)=f(s)$.
aa) and ab) follow immediately from the definitions of ι_{T} and ι_{S} respectively.
b) Assume φ and ψ are both inverse functions to f.

To show: $\varphi=\psi$.
By the definitions if identity functions and inverse functions,

$$
\varphi=\varphi \circ(f \circ \psi)=(\varphi \circ f) \circ \psi=\psi
$$

So, if an inverse function to f exists, then it is unique.

