$\S1E.$ Sets

1. DeMorgan's Laws. Let A, B, and C be sets. Show that

$a) \ (A \cup B) \cup C = A \cup (B \cup C).$	$d) \ (A \cap B) \cap C = A \cap (B \cap C).$
b) $A \cup B = B \cup A$.	$e) \ A \cap B = B \cap A.$
$c) \ A \cup \emptyset = A.$	$f) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

§2E. Functions

- **1.** Let S, T, and U be sets and let $f: S \to T$ and $g: T \to U$ be functions. Show that
 - a) If f and g are injective then $g \circ f$ is injective.
 - b) If f and g are surjective then $g \circ f$ is surjective.
 - c) If f and g are bijective then $g \circ f$ is bijective.
- **2.** Let $f: S \to T$ be a function and let $U \subseteq S$. The **image** of U under f is the subset of T given by

$$f(U) = \{ f(u) \mid u \in U \}.$$

Let $f: S \to T$ be a function. The **image** of f is the subset of T given by

$$\operatorname{im} f = \{ f(s) \mid s \in S \}.$$

Note that im f = f(S).

Let $f: S \to T$ be a function and let $V \subseteq T$. The **inverse image** of V under f is the subset of S given by

$$f^{-1}(V) = \{ s \in S \mid f(s) \in V \}.$$

Let $f: S \to T$ be a function and let $t \in T$. The fiber of f over t is the subset of S given by

$$f^{-1}(t) = \{ s \in S \mid f(s) = t \}.$$

Note that $f^{-1}(t) = f^{-1}(\{t\})$.

Let $f: S \to T$ be a function. Show that the set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S.

3. a) Let $f: S \to T$ be a function. Define

$$\begin{array}{rccc} f' \colon S & \to & \inf f \\ s & \mapsto & f(s). \end{array}$$

Show that the map f' is well defined and surjective.

b) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\hat{f} \colon \begin{array}{ccc} F & \to & T \\ f^{-1}(t) & \mapsto & t. \end{array}$$

Show that the map \hat{f} is well defined and injective.

c) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\hat{f'}: \begin{array}{ccc} F & \to & \operatorname{im} f \\ f^{-1}(t) & \mapsto & t. \end{array}$$

Show that the map \hat{f}' is well defined and bijective.

4. Let S be a set. The **power set** of S, 2^S , is the set of all subsets of S.

Let S be a set and let $\{0,1\}^S$ be the set of all functions $f: S \to \{0,1\}$. Given a subset $T \subseteq S$ define a function $f_T: S \to \{0,1\}$ by

$$f_T(s) = \begin{cases} 0 & \text{if } s \notin T; \\ 1 & \text{if } s \in T; \end{cases}$$
$$\psi: 2^S \longrightarrow \{0,1\}^S$$

Show that the map

$$\begin{array}{rcccc} \psi \colon & 2^S & \to & \{0,1\}^S \\ & T & \mapsto & f_T \end{array}$$

is a bijection.

5. Let $\circ: S \times S \to S$ be an associative operation on a set S. An identity for \circ is an element $e \in S$ such that $e \circ s = s \circ e = s$, for all $s \in S$.

Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. A **left inverse** for s is an element $t \in S$ such that $t \circ s = e$. A **right inverse** for s is an element $t' \in S$ such that $s \circ t' = e$. An **inverse** for s is an element $s^{-1} \in S$ such that $s \circ s^{-1} = s^{-1} \circ s = e$.

- a) Let \circ be an operation on a set S. Show that if S contains an identity for \circ then it is unique.
- b) Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. Show that if s has an inverse then it is unique.
- 6. a) Let S and T be sets and let ι_S and ι_T be the identity maps on S and T respectively. Show that for any function $f: S \to T$,

$$\iota_T \circ f = f,$$
 and
 $f \circ \iota_S = f.$

b) Let $f: S \to T$ be a function. Show that if an inverse function to f exists then it is unique. (Hint: The proof is very similar to the proof in Ex. 5b.)

\S **1P. Sets**

1. DeMorgan's Laws. Let A, B, and C be sets. Show that

$a) \ (A \cup B) \cup C = A \cup (B \cup C).$	$d) \ (A \cap B) \cap C = A \cap (B \cap C).$
$b) \ A \cup B = B \cup A.$	$e) \ A \cap B = B \cap A.$
$c) \ A \cup \emptyset = A.$	$f) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Proof.

a) To show: aa)
$$(A \cup B) \cup C \subseteq A \cup (B \cup C)$$
.
ab) $A \cup (B \cup C) \subseteq (A \cup B) \cup C$.
Then $x \in A \cup B$ or $x \in C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A$ or $x \in B \cup C$.
So $x \in A \cup (B \cup C)$.
Then $x \in A \cup (B \cup C)$.
Then $x \in A \cup x \in B \cup C$.
So $x \in A \cup (B \cup C)$.
Then $x \in A \cup x \in B \cup C$.
So $x \in A \cup B$ or $x \in C$.
So $x \in A \cup B$ or $x \in C$.
So $x \in (A \cup B) \cup C$.
So $A \cup (B \cup C) \subseteq (A \cup B) \cup C$.
So $(A \cup B) \cup C = A \cup (B \cup C)$.
b) To show: ba) $A \cup B \subseteq B \cup A$.
bb) $B \cup A \subseteq A \cup B$.
Then $x \in A \cup x \in B$.
So $x \in B \cup A$.
So $x \in B \cup A$.
So $x \in B \cup A$.
So $A \cup B \subseteq B \cup A$.
So $A \cup B \subseteq B \cup A$.
bb) Let $x \in B \cup A$.
So $A \cup B \subseteq B \cup A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
So $A \cup B = B \cup A$.
c) T oshow: ca) $A \cup \emptyset \subseteq A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
C) To show: ca) $A \cup \emptyset \subseteq A$.
Then there exists $x \in A \cup \emptyset$ such that $x \notin A$.
So $x \in \emptyset$.
This is a contradiction to the definition of empty set.
So $A \cup \emptyset \subseteq A$.
Ch) Let $x \in A$.
Then $x \in A \cup x \in \emptyset$.
So $x \in U \cup \emptyset$.

So $A \cup \emptyset = A$.

- d) To show: da) $(A \cap B) \cap C \subseteq A \cap (B \cap C)$. db) $A \cap (B \cap C) \subseteq (A \cap B) \cap C$.
 - da) Let $x \in (A \cap B) \cap C$. Then $x \in A \cap B$ and $x \in C$. So $x \in A$ and $x \in B$ and $x \in C$. So $x \in A$ and $x \in B \cap C$. So $x \in A \cap (B \cap C)$. So $(A \cap B) \cap C \subseteq A \cap (B \cap C)$.
 - db) Let $x \in A \cap (B \cap C)$. Then $x \in A$ and $x \in B \cap C$. So $x \in A$ and $x \in B$ and $x \in C$. So $x \in A \cap B$ and $x \in C$. So $x \in (A \cap B) \cap C$. So $A \cap (B \cap C) \subseteq (A \cap B) \cap C$.
 - So $(A \cap B) \cap C = A \cap (B \cap C)$.
- e) To show: ea) $A \cap B \subseteq B \cap A$. eb) $B \cap A \subseteq A \cap B$.
 - ea) Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. So $x \in B$ and $x \in A$. So $x \in B \cap A$. So $A \cap B \subseteq B \cap A$.
 - eb) Let $x \in B \cap A$. Then $x \in B$ and $x \in A$. So $x \in A$ and $x \in B$. So $x \in A \cap B$. So $B \cap A \subseteq A \cap B$.
 - So $A \cap B = B \cap A$.

f) To show: fa)
$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.
fb) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

- fa) Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. So $x \in A$ and $x \in B$ or $x \in C$. So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$. So $x \in A \cap B$ or $x \in A \cap C$. So $x \in (A \cap B) \cup (A \cap C)$. So $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- $\begin{array}{l} \text{fb) Let } x \in (A \cap B) \cup (A \cap C). \\ \text{Then } x \in A \cap B \text{ or } x \in A \cap C. \\ \text{So } x \in A \text{ and } x \in B, \text{ or } x \in A \text{ and } x \in C. \\ \text{So } x \in A \text{ and, } x \in B \text{ or } x \in C. \\ \text{So } x \in A \text{ and } x \in B \cup C. \\ \text{So } x \in A \cap (B \cup C). \\ \text{So } (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C). \end{array}$

So
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
. \Box

§2P. Functions

(2.2.3) Proposition. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Proof.

 \implies : Assume $f: S \to T$ has an inverse function $f^{-1}: T \to S$. To show: a) f is injective. b) f is surjective. a) Assume $f(s_1) = f(s_2)$. To show: $s_1 = s_2$. $s_1 = f^{-1}(f(s_1)) = f^{-1}(f(s_2)) = s_2.$ So f is injective. b) Let $t \in T$. To show: There exists $s \in S$ such that f(s) = t. Let $s = f^{-1}(t)$. Then $f(s) = f(f^{-1}(t)) = t.$ So f is surjective. So f is bijective. $\iff:$ Assume $f: S \to T$ is bijective. To show: f has an inverse function. We need to define a function $\varphi: T \to S$. Let $t \in T$. Since f is surjective there exists $s \in S$ such that f(s) = t. Define $\varphi(t) = s$. To show: a) φ is well defined. b) φ is an inverse function to f. a) To show: aa) If $t \in T$ then $\varphi(t) \in S$. ab) If $t_1, t_2 \in T$ and $t_1 = t_2$ then $\varphi(t_1) = \varphi(t_2)$. aa) It is clear from the definition that $\varphi(t) \in S$. ab) To show: If $t_1 = t_2$ then $\varphi(t_1) = \varphi(t_2)$. Assume $t_1, t_2 \in T$ and $t_1 = t_2$. Let $s_1, s_2 \in S$ such that $f(s_1) = t_1$ and $f(s_2) = t_2$. Since $t_1 = t_2$, $f(s_1) = f(s_2)$. Since f is injective this implies that $s_1 = s_2$. So $\varphi(t_1) = s_1 = s_2 = \varphi(t_2)$. So φ is well defined. b) To show: ba) If $s \in S$ then $\varphi(f(s)) = s$.

bb) If $t \in T$ then $f(\varphi(t)) = t$.

ba) This is immediate from the definition of φ .

bb) Assume $t \in T$. Let $s \in S$ be such that f(s) = t. Then

$$f(\varphi(t)) = f(s) = t$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T respectively. So φ is an inverse function to f. \Box

(2.2.7) Proposition.

- a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
- b) Let S be a set and let $\{S_{\alpha}\}$ be a partition of S. Then the relation defined by

 $s \sim t$, if s, t are in the same S_{α} ,

is an equivalence relation on S.

Proof.

a) To show: aa) If $s \in S$ then s is in some equivalence class. ab) If $[s] \cap [t] \neq \emptyset$ then [s] = [t]. aa) Let $s \in S$. Since $s \sim s, s \in [s]$. ab) Assume $[s] \cap [t] \neq \emptyset$. To show: [s] = [t]. Since $[s] \cap [t] \neq 0$, there is an $r \in [s] \cap [t]$. So $s \sim r$ and $r \sim t$. By transitivity, $s \sim t$. To show: aba) $[s] \subseteq [t]$ abb) $[t] \subseteq [s].$ aba) Suppose $u \in [s]$. Then $u \sim s$. We know $s \sim t$. So, by transitivity, $u \sim t$. Therefore $u \in [t]$. So $[s] \subseteq [t]$. abb) Suppose $v \in [t]$. Then $v \sim t$. We know $t \sim s$. So, by transitivity, $v \sim s$. Therefore $v \in [s]$. So $[t] \subseteq [s]$. So [s] = [t]. So the equivalence classes form a partition of S.

- b) We must show that \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric, and transitive.
 - To show: ba) $s \sim s$ for all $s \in S$.
 - bb) If $s \sim t$ then $t \sim s$.
 - bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
 - ba) s and s are in the same S_{α} so $s \sim s$.
 - bb) Assume $s \sim t$. Then s and t are in the same S_{α} . So $t \sim s$.
 - bc) Assume $s \sim t$ and $t \sim u$. Then s and t are in the same S_{α} and t and u are in the same S_{α} . So s and u are in the same S_{α} . So $s \sim u$.

So \sim is an equivalence relation. \Box

1. Let S, T, U be sets and let $f: S \to T$ and $g: T \to U$ be functions.

- a) If f and g are injective then $g \circ f$ is injective.
- b) If f and g are surjective then $g \circ f$ is surjective.
- c) If f and g are bijective then $g \circ f$ is bijective.

Proof.

a) Assume f and g are injective.

To show: If $s_1, s_2 \in S$ and $(g \circ f)(s_1) = (g \circ f)(s_2)$ then $s_1 = s_2$. Assume $s_1, s_2 \in S$ and $(g \circ f)(s_1) = (g \circ f)(s_2)$. Then

$$g(f(s_1)) = g(f(s_2)).$$

Thus, since g is injective, $f(s_1) = f(s_2)$. Thus, since f is injective, $s_1 = s_2$. So $g \circ f$ is injective.

b) Assume f and g are surjective.

To show: If $u \in U$ then there exists $s \in S$ such that $(g \circ f)(s) = u$. Assume $u \in U$.

Since g is surjective there exists $t \in T$ such that g(t) = u. Since f is surjective there exists $s \in S$ such that f(s) = t. So

$$(g \circ f)(s) = g(f(s))$$
$$= g(t)$$
$$= u.$$

So there exists $s \in S$ such that $(g \circ f)(s) = u$. So $g \circ f$ is surjective.

- c) Assume f and g are bijective.
 - To show: ca) $g \circ f$ is injective.

cb) $g \circ f$ is surjective.

- ca) Since f and g are bijective, f and g are injective. Thus, by a), $g \circ f$ is injective.
- cb) Since f and g are bijective, f and g are surjective. Thus, by b), $g \circ f$ is surjective.
- So $g \circ f$ is bijective. \Box

2. Let $f: S \to T$ be a function. Then the set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S. *Proof.*

To show: a) If $s' \in S$ then $s' \in f^{-1}(t)$ for some $t \in T$. b) If $f^{-1}(t_1) \cap f^{-1}(t_2) \neq \emptyset$ then $f^{-1}(t_1) = f^{-1}(t_2)$. a) Assume $s' \in S$. Then $f^{-1}(f(s')) = \{s \in S \mid f(s) = f(s')\}$. Since $f(s') = f(s'), s' \in f^{-1}(f(s'))$. b) Assume $f^{-1}(t_1) \cap f^{-1}(t_2) \neq \emptyset$. Let $s \in f^{-1}(t_1) \cap f^{-1}(t_2)$.

So
$$f(s) = t_1$$
 and $f(s) = t_2$.
To show: $f^{-1}(t_1) = f^{-1}(t_2)$.
To show: ba) $f^{-1}(t_1) \subseteq f^{-1}(t_2)$.
bb) $f^{-1}(t_2) \subseteq f^{-1}(t_1)$.

ba) Let
$$k \in f^{-1}(t_1)$$
.
Then $f(k) = t_1$
 $= f(s)$
 $= t_2$.
So $k \in f^{-1}(t_2)$.
So $f^{-1}(t_1) \subseteq f^{-1}(t_2)$.
bb) Let $h \in f^{-1}(t_2)$.
Then $f(k) = t_2$
 $= f(s)$
 $= t_1$.
So $h \in f^{-1}(t_1)$.
So $f^{-1}(t_2) \subseteq f^{-1}(t_1)$.
So $f^{-1}(t_2) \subseteq f^{-1}(t_1)$.
the set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S . \Box

3. a) Let $f: S \to T$ be a function. Define

$$\begin{array}{rccc} f' \colon S & \to & \inf f \\ s & \mapsto & f(s). \end{array}$$

Then the map f' is well defined and surjective.

b) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\hat{f} \colon \begin{array}{ccc} F & \to & T \\ f^{-1}(t) & \mapsto & t. \end{array}$$

Then the map \hat{f} is well defined and injective.

c) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\begin{array}{rccc} \hat{f'} \colon & F & \to & \inf f \\ & f^{-1}(t) & \mapsto & t. \end{array}$$

Then the map \hat{f}' is well defined and bijective.

Proof.

 So

- a) To show: aa) f' is well defined. ab) f' is surjective.
 - aa) To show: aaa) If $s \in S$ then $f'(s) \in \text{im } f$. aab) If $s_1 = s_2$ then $f'(s_1) = f'(s_2)$.
 - aaa) Assume $s \in S$. Then $f'(s) = f(s) \in \text{im } f$ by definition of f' and im f.
 - aab) Assume $s_1 = s_2$. Then, by definition of f',

$$f'(s_1) = f(s_1) = f(s_2) = f'(s_2).$$

So f' is well defined.

ab) To show: If $t \in \operatorname{im} f$ then there exists $s \in S$ such that f'(s) = t. Assume $t \in \operatorname{im} f$. Then f(s) = t for some $s \in S$. So f'(s) = f(s) = t. So f' is surjective.

b) To show: ba) \hat{f} is well defined. bb) \hat{f} is injective. ba) To show: baa) If $f^{-1}(t) \in F$ then $\hat{f}(f^{-1}(t)) \in T$. bab) If $f^{-1}(t_1) = f^{-1}(t_2)$ then $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$. baa) Assume $f^{-1}(t) \in F$. Then $\hat{f}(f^{-1}(t)) = t \in T$, by definition. bab) Assume $f^{-1}(t_1) = f^{-1}(t_2)$. Let $s \in f^{-1}(t_1)$. Then $s \in f^{-1}(t_2)$ also. So $t_1 = f(s) = t_2$. Then $\hat{f}(f^{-1}(t_1)) = t_1 = t_2 = \hat{f}(f^{-1}(t_2))$.

So
$$f$$
 is well defined.

- bb) To show: If $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$ then $f^{-1}(t_1) = f^{-1}(t_2)$. Assume $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$. Then $t_1 = t_2$. To show: $f^{-1}(t_1) = f^{-1}(t_2)$. This is clearly true since $t_1 = t_2$. So \hat{f} is injective.
- c) By Ex. 2.2.3 b), the function

$$\hat{f} \colon \begin{array}{ccc} F & \to & T \\ f^{-1}(t) & \mapsto & t \end{array}$$

is well defined and injective. By Ex. 2.2.3 a), the function

$$\begin{array}{cccc} \hat{f'} \colon & F & \to & \mathrm{im}\,\hat{f} \\ & f^{-1}(t) & \mapsto & t \end{array}$$

is well defined and surjective. To absence on \hat{f} in \hat{f}

To show: ca) $\operatorname{im} \hat{f} = \operatorname{im} f$. cb) \hat{f}' is injective. ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$. caa) Assume $t \in \operatorname{im} \hat{f}$. Then $f^{-1}(t)$ is nonempty. So there exists $s \in S$ such that f(s) = t. So $t \in \operatorname{im} f$. So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) Assume $t \in \text{im } f$. Then there exists $s \in S$ such that f(s) = t. So $f^{-1}(t) \neq \emptyset$. So $t \in \operatorname{im} \hat{f}$. So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$. So $\operatorname{im} \hat{f} = \operatorname{im} f$. cb) To show: If $\hat{f}'(f^{-1}(t_1)) = \hat{f}'(f^{-1}t_2)$ then $f^{-1}(t_1) = f^{-1}(t_2)$. Assume $\hat{f}'(f^{-1}(t_1)) = \hat{f}'(f^{-1}(t_2)).$

So
$$t_1 = t_2$$
.
So $f^{-1}(t_1) = f^{-1}(t_2)$.
So \hat{f}' is injective.
So \hat{f}' is well defined and bijective. \Box

4. Let S be a set and let $\{0,1\}^S$ be the set of all functions $f: S \to \{0,1\}$. Given a subset $T \subseteq S$ define a function $f_T: S \to \{0,1\}$ by

$$f_T(s) = \begin{cases} 0 & \text{if } s \notin T; \\ 1 & \text{if } s \in T. \end{cases}$$

Then the map

$$\begin{array}{rcccc} \psi \colon & 2^S & \to & \{0,1\}^S \\ & T & \mapsto & f_T \end{array}$$

is a bijection.

Proof.

To show: a) ψ is well defined.

b) ψ is bijective.

- a) To show: aa) If $T \in 2^S$ then $\psi(T) = f_T \in \{0, 1\}^S$. ab) If T_1 and T_2 are subsets of S and $T_1 = T_2$ then $\psi(T_1) = \psi(T_2)$.
 - aa) It is clear from the definition of f_T that $zz/psi(T) = f_T$ is a function from S to $\{0, 1\}$.
 - ab) Assume T_1 and T_2 are subsets of S and $T_1 = T_2$.
 - To show: $\psi(T_1) = \psi(T_2)$. To show: $f_{T_1} = f_{T_2}$. To show: If $s \in S$ then $f_{T_1}(s) = f_{T_2}(s)$. Assume $s \in S$. Case 1: If $s \in T_1$ then, since $T_1 = T_2$, $s \in T_2$. So

$$f_{T_1}(s) = 1 = f_{T_2}(s)$$

Case 2: If $s \notin T_1$ then, since $T_1 = T_2$, $s \notin T_2$. So

$$f_{T_1}(s) = 0 = f_{T_2}(s).$$

So $f_{T_1}(s) = f_{T_2}(s)$ for all $s \in S$.
So $f_{T_1} = f_{T_2}$.
So $\psi(T_1) = f_{T_1} = f_{T_2} = \psi(T_2).$

So ψ is well defined.

b) By virtue of Proposition 2.2.3 we would like to show: $\psi: 2^S \to \{0, 1\}^S$ has an inverse function. Given a function $f: S \to \{0, 1\}$ define

$$T_f = \{ s \in S \mid f(s) = 1 \}.$$

Define a function $\varphi : \{0,1\}^S \to 2^S$ by

$$\begin{array}{rccc} \varphi \colon & \{0,1\}^S & \to & 2^S \\ & f & \mapsto & T_f. \end{array}$$

To show: ba) φ is well defined.

bb) φ is an inverse function to ψ .

ba) To show: baa) If $f \in \{0,1\}^S$ then $\varphi(f) = T_f \in 2^S$. bab) If $f_1, f_2 \in \{0,1\}^S$ and $f_1 = f_2$ then

$$\varphi(f_1) = \varphi(f_2)$$

```
baa) By definition, T_f = \{s \in S \mid f(s) = 1\} is a subset of S.
          bab) Assume f_1, f_2 \in \{0, 1\}^S and f_1 = f_2.
                 To show: \varphi(f_1) = \varphi(f_2).
                     To show: T_{f_1} = T_{f_2}.
                          To show: baba) T_{f_1} \subseteq T_{f_2}.
                                       babb) T_{f_2} \subseteq T_{f_1}.
                             baba) Assume s \in T_{f_1}.
                                      Then f_1(s) = 1.
                                      Since f_2(s) = f_1(s), f_2(s) = 1.
                                      Thus s \in T_{f_2}.
                                      So T_{f_1} \subseteq T_{f_2}.
                             babb) Assume s \in T_{f_2}.
                                       Then f_2(s) = 1.
                                      Since f_1(s) = f_2(s), f_1(s) = 1.
                                      Thus s \in T_{f_1}.
                                      So T_{f_2} \subseteq T_{f_1}.
                     So T_{f_1} = T_{f_2}.
                 So \varphi(f_1) = \varphi(f_2).
      So \varphi is well defined.
bb) To show: bba) If T \in 2^S then \varphi(\psi(T)) = T.
                  bbb) If f \in \{0,1\}^S then \psi(\varphi(f)) = f.
          bba) Assume T \subseteq S.
                 To show: \varphi(\psi(T)) = T.
                     To show: T_{f_T} = T.
                          To show: bbaa) T_{f_T} \subseteq T.
                                      bbab) T \subseteq T_{f_T}.
                             bbaa) Assume t \in T_{f_T}.
                                      Then f_T(t) = 1.
                                      So t \in T.
                                      So T_{f_T} \subseteq T.
                             bbab) Assume t \in T.
                                      Then f_T(t) = 1.
                                      So t \in T_{f_T}.
                                      So T \subseteq T_{f_T}.
                     So T_{f_T} = T.
                 So \varphi(\psi(T)) = T.
         bbb) Assume f \in \{0, 1\}^S.
                 To show: \psi(\varphi(f)) = f.
                     By definition, \psi(\varphi(f)) = f_{T_f}.
                      To show: If s \in S then f_{T_f}(s) = f(s).
                          Assume s \in S.
                          Case 1: f(s) = 1.
                                     Then s \in T_f.
```

So
$$f_{T_f}(s) = 1$$
.
So $f_{T_f}(s) = f(s)$
Case 2: $f(s) = 0$.
Then $s \notin T_f$.
So $f_{T_f}(s) = 0$.
So $f_{T_f}(s) = f(s)$
So $f_{T_f}(s) = f(s)$.
So $\psi(\varphi(f)) = f$.

So φ is an inverse function to ψ .

So ψ is bijective. \Box

- 5. a) Let \circ be an operation on a set S. If S contains an identity for \circ then it is unique.
 - b) Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. If s has an inverse then it is unique.

Proof.

- a) Let $e, e' \in S$ be identities for \circ . Then $e \circ e' = e$, since e' is an identity, and $e \circ e' = e'$, since e is an identity. So e = e'.
- b) Assume $t, u \in S$ are both inverses for s. By associativity of \circ , $u = (t \circ s) \circ u = t \circ (s \circ u) = t$. \Box
- 6. a) Let S and T be sets and let ι_S and ι_T be the identity maps on S and T respectively. For any function $f: S \to T$,

$$\iota_T \circ f = f, \qquad and$$

 $f \circ \iota_S = f.$

b) Let $f: S \to T$ be a function. If an inverse function to f exists then it is unique.

Proof.

- a) Assume $f: S \to T$ is a function.
 - To show: aa) $\iota_T \circ f = f$.
 - ab) $f \circ \iota_S = f$.
 - To show: aa) If $s \in S$ then $\iota_T(f(s)) = f(s)$. ab) If $s \in S$ then $f(\iota_S(s)) = f(s)$.
 - aa) and ab) follow immediately from the definitions of ι_T and ι_S respectively.
- b) Assume φ and ψ are both inverse functions to f. To show: $\varphi = \psi$.

By the definitions if identity functions and inverse functions,

$$\varphi = \varphi \circ (f \circ \psi) = (\varphi \circ f) \circ \psi = \psi.$$

So, if an inverse function to f exists, then it is unique. \Box