
§1E. Sets

1. DeMorgan’s Laws. Let A, B, and C be sets. Show that

a) (A ∪B) ∪ C = A ∪ (B ∪ C).
b) A ∪B = B ∪A.

c) A ∪ ∅ = A.

d) (A ∩B) ∩ C = A ∩ (B ∩ C).
e) A ∩B = B ∩A.

f) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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§2E. Functions

1. Let S, T , and U be sets and let f :S → T and g:T → U be functions. Show that
a) If f and g are injective then g ◦ f is injective.
b) If f and g are surjective then g ◦ f is surjective.
c) If f and g are bijective then g ◦ f is bijective.

2. Let f :S → T be a function and let U ⊆ S. The image of U under f is the subset of T given by

f(U) = {f(u) | u ∈ U}.

Let f :S → T be a function. The image of f is the subset of T given by

im f = {f(s) | s ∈ S}.

Note that im f = f(S).

Let f :S → T be a function and let V ⊆ T . The inverse image of V under f is the subset of S given
by

f−1(V ) = {s ∈ S | f(s) ∈ V }.

Let f :S → T be a function and let t ∈ T . The fiber of f over t is the subset of S given by

f−1(t) = {s ∈ S | f(s) = t}.

Note that f−1(t) = f−1({t}).

Let f :S → T be a function. Show that the set F = {f−1(t) | t ∈ T} of fibers of the map f is a partition
of S.

3. a) Let f :S → T be a function. Define

f ′: S → im f
s (→ f(s).

Show that the map f ′ is well defined and surjective.

b) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ : F → T
f−1(t) (→ t.

Show that the map f̂ is well defined and injective.

c) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ ′: F → im f
f−1(t) (→ t.
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Show that the map f̂ ′ is well defined and bijective.

4. Let S be a set. The power set of S, 2S , is the set of all subsets of S.
Let S be a set and let {0, 1}S be the set of all functions f :S → {0, 1}. Given a subset T ⊆ S define a
function fT :S → {0, 1} by

fT (s) =
{ 0 if s /∈ T ;

1 if s ∈ T .
Show that the map

ψ: 2S → {0, 1}S

T (→ fT

is a bijection.

5. Let ◦:S × S → S be an associative operation on a set S. An identity for ◦ is an element e ∈ S such
that e ◦ s = s ◦ e = s, for all s ∈ S.

Let e be an identity for an associative operation ◦ on a set S. Let s ∈ S. A left inverse for s is an
element t ∈ S such that t ◦ s = e. A right inverse for s is an element t′ ∈ S such that s ◦ t′ = e. An
inverse for s is an element s−1 ∈ S such that s ◦ s−1 = s−1 ◦ s = e.

a) Let ◦ be an operation on a set S. Show that if S contains an identity for ◦ then it is unique.

b) Let e be an identity for an associative operation ◦ on a set S. Let s ∈ S. Show that if s has an
inverse then it is unique.

6. a) Let S and T be sets and let ιS and ιT be the identity maps on S and T respectively.
Show that for any function f :S → T ,

ιT ◦ f = f, and
f ◦ ιS = f.

b) Let f :S → T be a function. Show that if an inverse function to f exists then it is unique. (Hint:
The proof is very similar to the proof in Ex. 5b.)
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§1P. Sets

1. DeMorgan’s Laws. Let A, B, and C be sets. Show that

a) (A ∪B) ∪ C = A ∪ (B ∪ C).
b) A ∪B = B ∪A.

c) A ∪ ∅ = A.

d) (A ∩B) ∩ C = A ∩ (B ∩ C).
e) A ∩B = B ∩A.

f) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof.
a) To show: aa) (A ∪B) ∪ C ⊆ A ∪ (B ∪ C).

ab) A ∪ (B ∪ C) ⊆ (A ∪B) ∪ C.
aa) Let x ∈ (A ∪B) ∪ C.

Then x ∈ A ∪B or x ∈ C.
So x ∈ A or x ∈ B or x ∈ C.
So x ∈ A or x ∈ B ∪ C.
So x ∈ A ∪ (B ∪ C).
So (A ∪B) ∪ C ⊆ A ∪ (B ∪ C).

ab) Let x ∈ A ∪ (B ∪ C).
Then x ∈ A or x ∈ B ∪ C.
So x ∈ A or x ∈ B or x ∈ C.
So x ∈ A ∪B or x ∈ C.
So x ∈ (A ∪B) ∪ C.
So A ∪ (B ∪ C) ⊆ (A ∪B) ∪ C.

So (A ∪B) ∪ C = A ∪ (B ∪ C).

b) To show: ba) A ∪B ⊆ B ∪A.
bb) B ∪A ⊆ A ∪B.

ba) Let x ∈ A ∪B.
Then x ∈ A or x ∈ B.
So x ∈ B or x ∈ A.
So x ∈ B ∪A.
So A ∪B ⊆ B ∪A.

bb) Let x ∈ B ∪A.
Then x ∈ B or x ∈ A.
So x ∈ A or x ∈ B.
So x ∈ A ∪B.
So B ∪A ⊆ A ∪B.

So A ∪B = B ∪A.

c) To show: ca) A ∪ ∅ ⊆ A.
cb) A ⊆ A ∪ ∅.

ca) Proof by contradiction.
Assume A ∪ ∅ *⊆ A.
Then there exists x ∈ A ∪ ∅ such that x *∈ A.
So x ∈ ∅.
This is a contradiction to the definition of empty set.
So A ∪ ∅ ⊆ A.

cb) Let x ∈ A.
Then x ∈ A or x ∈ ∅.
So x ∈ A ∪ ∅.
So A ⊆ A ∪ ∅.
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So A ∪ ∅ = A.

d) To show: da) (A ∩B) ∩ C ⊆ A ∩ (B ∩ C).
db) A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C.

da) Let x ∈ (A ∩B) ∩ C.
Then x ∈ A ∩B and x ∈ C.
So x ∈ A and x ∈ B and x ∈ C.
So x ∈ A and x ∈ B ∩ C.
So x ∈ A ∩ (B ∩ C).
So (A ∩B) ∩ C ⊆ A ∩ (B ∩ C).

db) Let x ∈ A ∩ (B ∩ C).
Then x ∈ A and x ∈ B ∩ C.
So x ∈ A and x ∈ B and x ∈ C.
So x ∈ A ∩B and x ∈ C.
So x ∈ (A ∩B) ∩ C.
So A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C.

So (A ∩B) ∩ C = A ∩ (B ∩ C).

e) To show: ea) A ∩B ⊆ B ∩A.
eb) B ∩A ⊆ A ∩B.

ea) Let x ∈ A ∩B.
Then x ∈ A and x ∈ B.
So x ∈ B and x ∈ A.
So x ∈ B ∩A.
So A ∩B ⊆ B ∩A.

eb) Let x ∈ B ∩A.
Then x ∈ B and x ∈ A.
So x ∈ A and x ∈ B.
So x ∈ A ∩B.
So B ∩A ⊆ A ∩B.

So A ∩B = B ∩A.

f) To show: fa) A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).
fb) (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

fa) Let x ∈ A ∩ (B ∪ C).
Then x ∈ A and x ∈ B ∪ C.
So x ∈ A and x ∈ B or x ∈ C.
So x ∈ A and x ∈ B, or x ∈ A and x ∈ C.
So x ∈ A ∩B or x ∈ A ∩ C.
So x ∈ (A ∩B) ∪ (A ∩ C).
So A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).

fb) Let x ∈ (A ∩B) ∪ (A ∩ C).
Then x ∈ A ∩B or x ∈ A ∩ C.
So x ∈ A and x ∈ B, or x ∈ A and x ∈ C.
So x ∈ A and, x ∈ B or x ∈ C.
So x ∈ A and x ∈ B ∪ C.
So x ∈ A ∩ (B ∪ C).
So (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

So A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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§2P. Functions

(2.2.3) Proposition. Let f :S → T be a function. An inverse function to f exists if and only if f is
bijective.

Proof.
=⇒: Assume f :S → T has an inverse function f−1:T → S.

To show: a) f is injective.
b) f is surjective.

a) Assume f(s1) = f(s2).
To show: s1 = s2.

s1 = f−1
(
f(s1)

)
= f−1

(
f(s2)

)
= s2.

So f is injective.
b) Let t ∈ T .

To show: There exists s ∈ S such that f(s) = t.
Let s = f−1(t).
Then

f(s) = f
(
f−1(t)

)
= t.

So f is surjective.
So f is bijective.

⇐=: Assume f :S → T is bijective.
To show: f has an inverse function.

We need to define a function ϕ:T → S.
Let t ∈ T .
Since f is surjective there exists s ∈ S such that f(s) = t.
Define ϕ(t) = s.
To show: a) ϕ is well defined.

b) ϕ is an inverse function to f .

a) To show: aa) If t ∈ T then ϕ(t) ∈ S.
ab) If t1, t2 ∈ T and t1 = t2 then ϕ(t1) = ϕ(t2).

aa) It is clear from the definition that ϕ(t) ∈ S.
ab) To show: If t1 = t2 then ϕ(t1) = ϕ(t2).

Assume t1, t2 ∈ T and t1 = t2.
Let s1, s2 ∈ S such that f(s1) = t1 and f(s2) = t2.
Since t1 = t2, f(s1) = f(s2).
Since f is injective this implies that s1 = s2.

So ϕ(t1) = s1 = s2 = ϕ(t2).
So ϕ is well defined.

b) To show: ba) If s ∈ S then ϕ
(
f(s)

)
= s.

bb) If t ∈ T then f
(
ϕ(t)

)
= t.

ba) This is immediate from the definition of ϕ.
bb) Assume t ∈ T .

Let s ∈ S be such that f(s) = t.
Then

f
(
ϕ(t)

)
= f(s) = t.

So ϕ ◦ f and f ◦ ϕ are the identity functions on S and T respectively.
So ϕ is an inverse function to f .
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(2.2.7) Proposition.
a) Let S be a set and let ∼ be an equivalence relation on S. The set of equivalence classes of the

relation ∼ is a partition of S.
b) Let S be a set and let {Sα} be a partition of S. Then the relation defined by

s ∼ t, if s, t are in the same Sα,

is an equivalence relation on S.

Proof.
a) To show: aa) If s ∈ S then s is in some equivalence class.

ab) If [s] ∩ [t] *= ∅ then [s] = [t].
aa) Let s ∈ S.

Since s ∼ s, s ∈ [s].
ab) Assume [s] ∩ [t] *= ∅.

To show: [s] = [t].
Since [s] ∩ [t] *= 0, there is an r ∈ [s] ∩ [t].
So s ∼ r and r ∼ t.
By transitivity, s ∼ t.
To show: aba) [s] ⊆ [t]

abb) [t] ⊆ [s].
aba) Suppose u ∈ [s].

Then u ∼ s.
We know s ∼ t.
So, by transitivity, u ∼ t.
Therefore u ∈ [t].
So [s] ⊆ [t].

abb) Suppose v ∈ [t].
Then v ∼ t.
We know t ∼ s.
So, by transitivity, v ∼ s.
Therefore v ∈ [s].
So [t] ⊆ [s].

So [s] = [t].
So the equivalence classes form a partition of S.

b) We must show that ∼ is an equivalence relation, i.e. that ∼ is reflexive, symmetric, and transitive.
To show: ba) s ∼ s for all s ∈ S.

bb) If s ∼ t then t ∼ s.
bc) If s ∼ t and t ∼ u then s ∼ u.

ba) s and s are in the same Sα so s ∼ s.
bb) Assume s ∼ t.

Then s and t are in the same Sα.
So t ∼ s.

bc) Assume s ∼ t and t ∼ u.
Then s and t are in the same Sα and t and u are in the same Sα.
So s and u are in the same Sα.
So s ∼ u.

So ∼ is an equivalence relation.

1. Let S, T , U be sets and let f :S → T and g:T → U be functions.
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a) If f and g are injective then g ◦ f is injective.
b) If f and g are surjective then g ◦ f is surjective.
c) If f and g are bijective then g ◦ f is bijective.

Proof.
a) Assume f and g are injective.

To show: If s1, s2 ∈ S and (g ◦ f)(s1) = (g ◦ f)(s2) then s1 = s2.
Assume s1, s2 ∈ S and (g ◦ f)(s1) = (g ◦ f)(s2).
Then

g
(
f(s1)

)
= g

(
f(s2)

)
.

Thus, since g is injective, f(s1) = f(s2).
Thus, since f is injective, s1 = s2.

So g ◦ f is injective.

b) Assume f and g are surjective.
To show: If u ∈ U then there exists s ∈ S such that (g ◦ f)(s) = u.

Assume u ∈ U .
Since g is surjective there exists t ∈ T such that g(t) = u.
Since f is surjective there exists s ∈ S such that f(s) = t.
So

(g ◦ f)(s) = g
(
f(s)

)

= g(t)
= u.

So there exists s ∈ S such that (g ◦ f)(s) = u.
So g ◦ f is surjective.

c) Assume f and g are bijective.
To show: ca) g ◦ f is injective.

cb) g ◦ f is surjective.
ca) Since f and g are bijective, f and g are injective.

Thus, by a), g ◦ f is injective.
cb) Since f and g are bijective, f and g are surjective.

Thus, by b), g ◦ f is surjective.
So g ◦ f is bijective.

2. Let f :S → T be a function. Then the set F = {f−1(t) | t ∈ T} of fibers of the map f is a partition of S.

Proof.
To show: a) If s′ ∈ S then s′ ∈ f−1(t) for some t ∈ T .

b) If f−1(t1) ∩ f−1(t2) *= ∅ then f−1(t1) = f−1(t2).
a) Assume s′ ∈ S.

Then f−1(f(s′)) = {s ∈ S | f(s) = f(s′)}.
Since f(s′) = f(s′), s′ ∈ f−1

(
f(s′)

)
.

b) Assume f−1(t1) ∩ f−1(t2) *= ∅.
Let s ∈ f−1(t1) ∩ f−1(t2).
So f(s) = t1 and f(s) = t2.
To show: f−1(t1) = f−1(t2).

To show: ba) f−1(t1) ⊆ f−1(t2).
bb) f−1(t2) ⊆ f−1(t1).
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ba) Let k ∈ f−1(t1).
Then f(k) = t1

= f(s)
= t2.

So k ∈ f−1(t2).
So f−1(t1) ⊆ f−1(t2).

bb) Let h ∈ f−1(t2).
Then f(k) = t2

= f(s)
= t1.

So h ∈ f−1(t1).
So f−1(t2) ⊆ f−1(t1).

So f−1(t1) = f−1(t2).
So the set F = {f−1(t) | t ∈ T} of fibers of the map f is a partition of S.

3. a) Let f :S → T be a function. Define

f ′: S → im f
s (→ f(s).

Then the map f ′ is well defined and surjective.

b) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ : F → T
f−1(t) (→ t.

Then the map f̂ is well defined and injective.

c) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ ′: F → im f
f−1(t) (→ t.

Then the map f̂ ′ is well defined and bijective.

Proof.
a) To show: aa) f ′ is well defined.

ab) f ′ is surjective.
aa) To show: aaa) If s ∈ S then f ′(s) ∈ im f .

aab) If s1 = s2 then f ′(s1) = f ′(s2).
aaa) Assume s ∈ S.

Then f ′(s) = f(s) ∈ im f by definition of f ′ and im f .
aab) Assume s1 = s2.

Then, by definition of f ′,

f ′(s1) = f(s1) = f(s2) = f ′(s2).

So f ′ is well defined.

ab) To show: If t ∈ im f then there exists s ∈ S such that f ′(s) = t.
Assume t ∈ im f .
Then f(s) = t for some s ∈ S.
So f ′(s) = f(s) = t.
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So f ′ is surjective.

b) To show: ba) f̂ is well defined.
bb) f̂ is injective.

ba) To show: baa) If f−1(t) ∈ F then f̂
(
f−1(t)

)
∈ T .

bab) If f−1(t1) = f−1(t2) then f̂
(
f−1(t1)

)
= f̂

(
f−1(t2)

)
.

baa) Assume f−1(t) ∈ F .
Then f̂

(
f−1(t)

)
= t ∈ T , by definition.

bab) Assume f−1(t1) = f−1(t2).
Let s ∈ f−1(t1).
Then s ∈ f−1(t2) also.
So t1 = f(s) = t2.
Then

f̂
(
f−1(t1)

)
= t1 = t2 = f̂

(
f−1(t2)

)
.

So f̂ is well defined.
bb) To show: If f̂

(
f−1(t1)

)
= f̂

(
f−1(t2)

)
then f−1(t1) = f−1(t2).

Assume f̂
(
f−1(t1)

)
= f̂

(
f−1(t2)

)
.

Then t1 = t2.
To show: f−1(t1) = f−1(t2).

This is clearly true since t1 = t2.
So f̂ is injective.

c) By Ex. 2.2.3 b), the function

f̂ : F → T
f−1(t) (→ t

is well defined and injective.
By Ex. 2.2.3 a), the function

f̂ ′: F → im f̂
f−1(t) (→ t

is well defined and surjective.
To show: ca) im f̂ = im f .

cb) f̂ ′ is injective.

ca) To show: caa) im f̂ ⊆ im f .
cab) im f ⊆ im f̂ .

caa) Assume t ∈ im f̂ .
Then f−1(t) is nonempty.
So there exists s ∈ S such that f(s) = t.
So t ∈ im f .
So im f̂ ⊆ im f .

cab) Assume t ∈ im f .
Then there exists s ∈ S such that f(s) = t.
So f−1(t) *= ∅.
So t ∈ im f̂ .
So im f ⊆ im f̂ .

So im f̂ = im f .
cb) To show: If f̂ ′

(
f−1(t1)

)
= f̂ ′

(
f−1t2)

)
then f−1(t1) = f−1(t2).

Assume f̂ ′
(
f−1(t1)

)
= f̂ ′

(
f−1(t2)

)
.
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So t1 = t2.
So f−1(t1) = f−1(t2).

So f̂ ′ is injective.
So f̂ ′ is well defined and bijective.

4. Let S be a set and let {0, 1}S be the set of all functions f :S → {0, 1}. Given a subset T ⊆ S define
a function fT :S → {0, 1} by

fT (s) =
{

0 if s /∈ T ;
1 if s ∈ T .

Then the map

ψ: 2S → {0, 1}S

T (→ fT

is a bijection.

Proof.
To show: a) ψ is well defined.

b) ψ is bijective.
a) To show: aa) If T ∈ 2S then ψ(T ) = fT ∈ {0, 1}S .

ab) If T1 and T2 are subsets of S and T1 = T2 then ψ(T1) = ψ(T2).
aa) It is clear from the definition of fT that zz/psi(T ) = fT is a function from S to {0, 1}.
ab) Assume T1 and T2 are subsets of S and T1 = T2.

To show: ψ(T1) = ψ(T2).
To show: fT1 = fT2 .

To show: If s ∈ S then fT1(s) = fT2(s).
Assume s ∈ S.
Case 1: If s ∈ T1 then, since T1 = T2, s ∈ T2.

So

fT1(s) = 1 = fT2(s).

Case 2: If s /∈ T1 then, since T1 = T2, s /∈ T2.
So

fT1(s) = 0 = fT2(s).

So fT1(s) = fT2(s) for all s ∈ S.
So fT1 = fT2 .

So ψ(T1) = fT1 = fT2 = ψ(T2).
So ψ is well defined.

b) By virtue of Proposition 2.2.3 we would like to show:
ψ: 2S → {0, 1}S has an inverse function.
Given a function f :S → {0, 1} define

Tf = {s ∈ S | f(s) = 1}.

Define a function ϕ: {0, 1}S → 2S by

ϕ: {0, 1}S → 2S

f (→ Tf .
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To show: ba) ϕ is well defined.
bb) ϕ is an inverse function to ψ.

ba) To show: baa) If f ∈ {0, 1}S then ϕ(f) = Tf ∈ 2S .
bab) If f1, f2 ∈ {0, 1}S and f1 = f2 then

ϕ(f1) = ϕ(f2).

baa) By definition, Tf = {s ∈ S | f(s) = 1} is a subset of S.
bab) Assume f1, f2 ∈ {0, 1}S and f1 = f2.

To show: ϕ(f1) = ϕ(f2).
To show: Tf1 = Tf2 .

To show: baba) Tf1 ⊆ Tf2 .
babb) Tf2 ⊆ Tf1 .

baba) Assume s ∈ Tf1 .
Then f1(s) = 1.
Since f2(s) = f1(s), f2(s) = 1.
Thus s ∈ Tf2 .
So Tf1 ⊆ Tf2 .

babb) Assume s ∈ Tf2 .
Then f2(s) = 1.
Since f1(s) = f2(s), f1(s) = 1.
Thus s ∈ Tf1 .
So Tf2 ⊆ Tf1 .

So Tf1 = Tf2 .
So ϕ(f1) = ϕ(f2).

So ϕ is well defined.

bb) To show: bba) If T ∈ 2S then ϕ
(
ψ(T )

)
= T .

bbb) If f ∈ {0, 1}S then ψ
(
ϕ(f)

)
= f .

bba) Assume T ⊆ S.
To show: ϕ

(
ψ(T )

)
= T .

To show: TfT = T .
To show: bbaa) TfT ⊆ T .

bbab) T ⊆ TfT .
bbaa) Assume t ∈ TfT .

Then fT (t) = 1.
So t ∈ T .
So TfT ⊆ T .

bbab) Assume t ∈ T .
Then fT (t) = 1.
So t ∈ TfT .
So T ⊆ TfT .

So TfT = T .
So ϕ

(
ψ(T )

)
= T .

bbb) Assume f ∈ {0, 1}S .
To show: ψ

(
ϕ(f)

)
= f .

By definition, ψ
(
ϕ(f)

)
= fTf .

To show: If s ∈ S then fTf (s) = f(s).
Assume s ∈ S.
Case 1: f(s) = 1.

Then s ∈ Tf .
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So fTf (s) = 1.
So fTf (s) = f(s).

Case 2: f(s) = 0.
Then s /∈ Tf .
So fTf (s) = 0.
So fTf (s) = f(s).

So fTf (s) = f(s).
So ψ

(
ϕ(f)

)
= f .

So ϕ is an inverse function to ψ.
So ψ is bijective.

5. a) Let ◦ be an operation on a set S. If S contains an identity for ◦ then it is unique.
b) Let e be an identity for an associative operation ◦ on a set S. Let s ∈ S. If s has an inverse then

it is unique.

Proof.
a) Let e, e′ ∈ S be identities for ◦.

Then e ◦ e′ = e, since e′ is an identity, and e ◦ e′ = e′, since e is an identity.
So e = e′.

b) Assume t, u ∈ S are both inverses for s.
By associativity of ◦, u = (t ◦ s) ◦ u = t ◦ (s ◦ u) = t.

6. a) Let S and T be sets and let ιS and ιT be the identity maps on S and T respectively.
For any function f :S → T ,

ιT ◦ f = f, and
f ◦ ιS = f.

b) Let f :S → T be a function. If an inverse function to f exists then it is unique.

Proof.
a) Assume f :S → T is a function.

To show: aa) ιT ◦ f = f .
ab) f ◦ ιS = f .

To show: aa) If s ∈ S then ιT (f(s)) = f(s).
ab) If s ∈ S then f(ιS(s)) = f(s).

aa) and ab) follow immediately from the definitions of ιT and ιS respectively.

b) Assume ϕ and ψ are both inverse functions to f .
To show: ϕ = ψ.
By the definitions if identity functions and inverse functions,

ϕ = ϕ ◦ (f ◦ ψ) = (ϕ ◦ f) ◦ ψ = ψ.

So, if an inverse function to f exists, then it is unique.
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