# Problem Set: Graphing <br> 620-205 Semester I 2010 

Arun Ram<br>Department of Mathematics and Statistics<br>University of Melbourne<br>Parkville, VIC 3010 Australia aram@unimelb.edu.au and<br>Department of Mathematics<br>University of Wisconsin, Madison<br>Madison, WI 53706 USA<br>ram@math.wisc.edu

Last updates: 28 February 2010
(1) Graphs of the Basic Functions
(2) Graphing Polynomials
(3) Graphing Rational Functions
(4) Graphing Sequences
(5) Graphing Other Functions
(6) Where is a Function Continuous?
(7) Existence of Limits

## 1. Graphs of the Basic Functions

(1) Graph $f(x)=|x|$.
(2) Graph $f(x)=\lfloor x\rfloor$.
(3) Graph $f(x)=2$.
(4) Graph $f(x)=x$.
(5) Graph $f(x)=x^{2}$.
(6) Graph $f(x)=x^{3}$.
(7) Graph $f(x)=x^{4}$.
(8) Graph $f(x)=x^{5}$.
(9) $\operatorname{Graph} f(x)=x^{6}$.
(10) Graph $f(x)=x^{100}$.
(11) Graph $f(x)=x^{-1}$.
(12) Graph $f(x)=x^{-2}$.
(13) Graph $f(x)=x^{-3}$.
(14) Graph $f(x)=x^{-4}$.
(15) Graph $f(x)=x^{-100}$.
(16) Graph $f(x)=e^{x}$.
(17) Graph $f(x)=\sin x$.
(18) Graph $f(x)=\cos x$.
(19) Graph $f(x)=\tan x$.
(20) Graph $f(x)=\cot x$.
(21) Graph $f(x)=\sec x$.
(22) Graph $f(x)=\csc x$.
(23) Graph $f(x)=\sqrt{x}$.
(24) Graph $f(x)=x^{1 / 3}$.
(25) Graph $f(x)=x^{1 / 4}$.
(26) Graph $f(x)=x^{1 / 5}$.
(27) Graph $f(x)=x^{1 / 6}$.
(28) Graph $f(x)=\frac{1}{\sqrt{x}}$.
(29) Graph $f(x)=x^{-1 / 3}$.
(30) Graph $f(x)=x^{-1 / 4}$.
(31) Graph $f(x)=\ln x$.
(32) Graph $f(x)=\arcsin x$.
(33) Graph $f(x)=\arccos x$.
(34) Graph $f(x)=\arctan x$.
(35) Graph $f(x)=\operatorname{arccot} x$.
(36) Graph $f(x)=\operatorname{arcsec} x$.
(37) Graph $f(x)=\operatorname{arccsc} x$.

## 2. Graphing Polynomials

(1) Graph $f(x)=a$, where $a$ is a constant.
(2) Graph $f(x)=a x+b$, where $a$ and $b$ are constants.
(3) Graph $f(x)=a(x-c)+b$, where $a,, b$ and $c$ are constants.
(4)

Graph $f(x)= \begin{cases}2-x, & \text { if } x \geq 1, \\ x, & \text { if } 0 \leq x \leq 1 .\end{cases}$
(5)

Graph $f(x)= \begin{cases}2+x, & \text { if } x>0, \\ 2-x, & \text { if } x \leq 0 .\end{cases}$
(6)

Graph $f(x)= \begin{cases}1-x, & \text { if } x<1, \\ x^{2}-1, & \text { if } x \geq 1 .\end{cases}$
(7) Graph $f(x)=2 x-x^{2}$.
(8) Graph $f(x)=x-x^{2}-27$.
(9) Graph $f(x)=3 x^{2}-2 x-1$.
(10) Graph $f(x)=x^{3}$.
(11) Graph $f(x)=x^{3}-x+1$.
(12) Graph $f(x)=x^{3}-x-1$.
(13) Graph $f(x)=(x-2)^{2}(x-1)$.
(14) Graph $f(x)=2 x^{3}-21 x^{2}+36 x-20$.
(15) Graph $f(x)=2 x^{3}+x^{2}+20 x$.
(16) Graph $f(x)=1-x^{4}$.
(17) Graph $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$.
(18) Graph $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$.
(19) Graph $f(x)=x^{5}-4 x^{4}+4 x^{3}$.
(20) Graph $f(x)=x^{3}(x-2)^{2}$.
(21) Graph $f(x)=(x-2)^{4}(x+1)^{3}(x-1)$.

## 3. Graphing Rational Functions

(1) Graph $f(x)=y$, where $x^{2}+y^{2}=1$.
(2) Graph $f(x)=\sqrt{1-x^{2}}$.
(3) Graph $f(x)=\sqrt{a^{2}-x^{2}}$, where $a$ is a constant.
(4) Graph $f(x)=y$, where $(x-h)^{2}+(y-k)^{2}=r^{2}$, and $h, k$ and $r$ are constants.
(5) Graph $f(x)=y$, where $x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}=r^{2}$, and $h, k$ and $r$ are constants.
(6) Graph $f(x)=y$ where $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and $a$ and $b$ are constants.
(7) Graph $f(x)=y$, where $x=a \cos \theta, y=b \sin \theta$, and $a$ and $b$ are constants.
(8) Graph $f(x)=(b / a) \sqrt{a^{2}-x^{2}}$, where $a$ and $b$ are constants.
(9) Graph $f(x)=y$, where $x^{2}-y^{2}=1$.
(10) Graph $f(x)=y$, where $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, and $a$ and $b$ are constants.
(11) Graph $f(x)=a x^{2}-b$, where $a$ and $b$ are constants.
(12) Graph $f(x)=y$, where $x=2 y^{2}-1$.
(13) Graph $f(x)=y$, where $x=\cos 2 \theta$ and $y=\cos \theta$.
(14) Graph $f(x)=b \sqrt{x-a}$, where $a$ and $b$ are constants.
(15) Graph $f(x)=\sqrt{x+2}$.
(16) Graph $f(x)=-\sqrt{x+2}$.
(17) Graph $f(x)=y$, where $y^{2}\left(x^{2}-x\right)=x^{2}-1$.

Graph $f(x)=y$, where $x=\frac{y^{2}-1}{y^{2}+1}$.
(19)

Graph $f(x)=\frac{\sqrt{1+x}}{\sqrt{1-x}}$.
(20)

Graph $f(x)=\frac{x^{2}}{\sqrt{x+1}}$.
(21) Graph $f(x)=x \sqrt{32-x^{2}}$.
(22)

Graph $f(x)=x \sqrt{1-x^{2}}$.

## 4. Graphing sequences

(1) Graph the sequence $a_{n}=n$.
(2) Graph the sequence $a_{n}=(-1)^{n} n$.
(3) Graph the sequence $a_{n}=n^{2}$.
(4) Graph the sequence $a_{n}=12 n-n^{3}$.
(5) Graph the sequence $a_{n}=n$ !.
(6) Graph the sequence $a_{n}=\frac{1}{n}$.
(7) Graph the sequence $a_{n}=3-\frac{1}{n}$.
(8) Graph the sequence $a_{n}=\frac{1}{n^{p}}$.
(9) Graph the sequence $a_{n}=\frac{1}{n!}$.
(10)

Graph the sequence $a_{n}=\frac{n}{n(n+1)}$.
(11)

Graph the sequence $a_{n}=\frac{1}{n}-\frac{1}{n+1}$.
(12)

Graph the sequence $a_{n}=\frac{(-1)}{n+1}$.
(13)

Graph the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
(14)

Graph the sequence $a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$.
(15)

Graph the sequence $a_{n}=\frac{n}{2 n+1}$.
(16)

Graph the sequence $a_{n}=\frac{2 n}{n+1}$.
(17)

Graph the sequence $a_{n}=\frac{n}{n^{2}+1}$.
(18) Graph the sequence $a_{n}=\frac{3 n+1}{2 n+5}$.
(19)

Graph the sequence $a_{n}=\frac{n^{2}-1}{2 n^{2}+3}$.

Graph the sequence $a_{n}=\frac{i^{n}}{n^{2}}$.
(21)

Graph the sequence $a_{n}=\frac{n+2 i}{n}$.
(22)

Graph the sequence $a_{n}=\frac{4 n+3}{4 n^{2}+3 n+1}$.
(23)

Graph the sequence $a_{k}=\frac{1}{\left(3 k^{4}-7 k^{2}+5\right)^{\frac{1}{3}}}$.
(24)

Graph the sequence $a_{n}=\frac{(n!)^{2}}{(2 n)!}$.
(25)

Graph the sequence $a_{n}=\frac{(n!)^{2} 5^{n}}{(2 n)!}$.
(26) Graph the sequence $a_{n}=(-1)^{n}$.
(27) Graph the sequence $a_{n}=n^{1 / n}$.
(28)

Graph the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$.
(29) Graph the sequence $a_{n}=e^{i n \pi / 7}$.
(30) Graph the sequence $a_{n}=\sqrt{n}$.
(31) Graph the sequence $a_{n}=\frac{1}{\sqrt{n}}$.
(32) Graph the sequence $a_{n}=\sqrt{n+1}-\sqrt{n}$.
(33) Graph the sequence $a_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n})$.
(34) Let $x \in \mathbb{R}$ with $|x|<1$. Graph the sequence $a_{n}=x^{n}$.
(35) Let $x \in \mathbb{R}$ with $x>0$. Graph the sequence $a_{n}=x^{1 / n}$.
(36) Let $x \in \mathbb{R}$. Graph the sequence $a_{n}=\left(1+\frac{x}{n}\right)^{n}$.
(37)

Let $x \in \mathbb{R}$. Graph the sequence $a_{n}=\frac{1-x^{n+1}}{1-x}$.
(38) Let $x \in \mathbb{R}$. Graph the sequence $a_{n}=1+x+\cdots+x^{n}$.
(39)

Graph the sequence given by $a_{1}=3$ and $a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{5}{a_{n-1}}\right)$.
(40) Let $a \in \mathbb{R}$ with $a>0$. Fix a positive real number $x_{1}$. Graph the sequence given by $x_{n+1}$ $=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$.
(41) Let $\alpha, \beta \in \mathbb{R}_{>0}$. Graph the sequence given by $a_{1}=\alpha$ and $a_{n+1}=\sqrt{\beta+a_{n}}$.
(42) Let $\alpha, \beta \in \mathbb{R}_{>0}$. Graph the sequence given by $a_{1}=\alpha$ and $a_{n+1}=\beta+\sqrt{a_{n}}$.
(43)

Graph the sequence given by $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}}$.
(44)

Fix a real number $x_{1}$ between 0 and 1 . Graph the sequence given by $x_{n+1}=\frac{1}{7}\left(x_{n}^{3}+2\right)$.
Estimate the solution to $x^{3}-7 x+2=0$ to three decimal places and verify that the limit is a solution to the equation $x^{3}-7 x+2=0$.
(45) Graph the sequence given by $a_{1}=0, a_{2 k}=\frac{1}{2} a_{2 k+1}$, and $a_{2 k+1}=\frac{1}{2}+a_{2 k}$.

## 5. Graphing Other Functions

(1) Graph $f(x)=\lfloor x\rfloor$.
(2) Graph $f(x)=|x|$.
(3) Graph $f(x)=|x-5|$.
(4) Graph $f(x)=\left|x^{2}-1\right|$.
(5)
$\operatorname{Graph} f(x)= \begin{cases}1, & \text { if } x>0, \\ 0, & \text { if } x=0, \\ -1, & \text { if } x<0 .\end{cases}$
(6) Graph $f(x)=(x-1)^{1 / 3}$.
(7) Graph $f(x)=x^{2 / 3}$.
(8) $\quad$ Graph $f(x)=\frac{1}{(x-1)^{2 / 3}}$.
(9) Graph $f(x)=x(1-x)^{2 / 5}$.
(10) Graph $f(x)=x^{2 / 3}(6-x)^{1 / 3}$.
(11) Graph $f(x)=y$, where $\sqrt{x}+\sqrt{y}=1$.
(12) Graph $f(x)=y$, where $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, where $a$ is a constant.
(13) Graph $f(x)=y$, where $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$.
(14) Graph $f(x)=\sin x$.
(15) Graph $f(x)=\sin 2 x-x$.
(16) Graph $y=\sin x-\cos x$, for $-\pi / 3<x<0$.
(17) Graph $y(x)=2 \cos x-\sin 2 x$.
(18) Graph $y=\frac{\sin x}{x}$.
(19) Graph $y=\sin (1 / x)$.
(20) Graph $y=e^{-x}$.
(21) Graph $y=e^{1 / x}$.
(22) Graph $y=e^{-x^{2}}$.
(23) Graph $y=\ln \left(4-x^{2}\right)$.

## 6. Where is a Function Continuous?

(1) Graph $f(x)=x^{2}+3 x+4$. For which values of $x$ is the function continuous?
(2) Graph

$$
f(x)= \begin{cases}\frac{x^{2}-x-6}{x-3}, & \text { if } x \neq 3, \\ 5, & \text { if } x=3 .\end{cases}
$$

For which values of $x$ is the function continuous?
(3) Graph

$$
f(x)= \begin{cases}\frac{\sin 3 x}{x}, & \text { if } x \neq 0, \\ 1, & \text { if } x=0\end{cases}
$$

For which values of $x$ is the function continuous?
(4) Graph

$$
f(x)= \begin{cases}\frac{1-\cos x}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

For which values of $x$ is the function continuous?
(5) Let $k \in \mathbb{R}$. Graph

$$
f(x)= \begin{cases}\frac{\sin 2 x}{5 x}, & \text { if } x \neq 0 \\ k, & \text { if } x=0\end{cases}
$$

For which values of $k$ is the function continuous?
(6) Graph

$$
f(x)= \begin{cases}x-1, & \text { if } 1 \leq x<2, \\ 2 x-3, & \text { if } 2 \leq x \leq 3\end{cases}
$$

For which values of $x$ is the function continuous?
(7) Graph

$$
f(x)= \begin{cases}\cos x, & \text { if } x \geq 0 \\ -\cos x, & \text { if } x<0\end{cases}
$$

For which values of $x$ is the function continuous?
(8) Graph

$$
f(x)= \begin{cases}\sin (1 / x), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

For which values of $x$ is the function continuous?
(9) Let $a \in \mathbb{R}$. Graph

$$
f(x)= \begin{cases}a x+5, & \text { if } x \leq 2 \\ x-1, & \text { if } x>2\end{cases}
$$

For which values of $x$ is the function continuous at $x=2$ ?
(10) Graph

$$
f(x)= \begin{cases}1+x^{2}, & \text { if } 0 \leq x \leq 1, \\ 2-x, & \text { if } x>1 .\end{cases}
$$

For which values of $x$ is the function continuous?
(11) Graph $f(x)=2 x-|x|$. For which values of $x$ is the function continuous?
(12) Let $a \in \mathbb{R}$. Graph

$$
f(x)= \begin{cases}2 x-1, & \text { if } x<2 \\ a, & \text { if } x=2 \\ x+1, & \text { if } x>2\end{cases}
$$

For which values of $a$ is the function continuous?
(13) Graph

$$
f(x)= \begin{cases}\frac{|x-a|}{x-a}, & \text { if } x \neq a, \\ 1, & \text { if } x=a\end{cases}
$$

For which values of $x$ is the function continuous?
(14) Graph

$$
f(x)= \begin{cases}\frac{x-|x|}{2}, & \text { if } x \neq 0 \\ 2, & \text { if } x=0\end{cases}
$$

For which values of $x$ is the function continuous?
(15) Graph

$$
f(x)= \begin{cases}\sin x, & \text { if } x<0, \\ x, & \text { if } x \geq 0\end{cases}
$$

For which values of $x$ is the function continuous?
(16) Graph

$$
f(x)= \begin{cases}\frac{x^{n}-1}{x-1}, & \text { if } x \neq 1 \\ n, & \text { if } x=1\end{cases}
$$

For which values of $x$ is the function continuous?
(17) Graph $f(x)=\cos x$. For which values of $x$ is the function continuous?
(18) Graph $f(x)=\cos |x|$. For which values of $x$ is the function continuous?
(19) Graph $f(x)=\lfloor x\rfloor$. For which values of $x$ is the function continuous?
(20) Graph

$$
f(x)= \begin{cases}x^{3}-x^{2}+2 x-2, & \text { if } x \neq 1, \\ 4, & \text { if } x=1 .\end{cases}
$$

For which values of $x$ is the function continuous?
(21) Graph $f(x)=|x|+|x-1|$, for $-1 \leq x \leq 2$. For which values of $x$ is the function continuous?

## 7. Existence of Limits

(1) Graph $y=\left(\frac{1}{x}\right)$ and explain why $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)$ does not exist.
(2) Graph $y=(x)$ and explain why $\lim _{x \rightarrow \pi / 2} \tan (x)$ does not exist.
(3) Graph $y=\sec (x)$ and explain why $\lim _{x \rightarrow \pi / 2} \sec (x)$ does not exist.
(4) Graph $y=\csc (x)$ and explain why $\lim _{x \rightarrow 0} \csc (x)$ does not exist.
(5) Graph $y=\ln (x)$ and explain why $\lim _{x \rightarrow-1} \ln (x)$ does not exist.
(6) Graph $y=\sin \left(\frac{1}{x}\right)$ and explain why $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.
(7) Graph $y=\cos (x)$ and explain why $\lim _{x \rightarrow \infty} \cos (x)$ does not exist.
(8) Graph $y=\operatorname{sgn}(x)$, where

$$
\operatorname{sgn}(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0\end{cases}
$$

Explain why $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist.
(9) Graph $y=2^{1 / x}$ and explain why $\lim _{x \rightarrow 0} 2^{1 / x}$ does not exist.
(10) Graph $y=2^{1 /(1-x)}$ and explain why $\lim _{x \rightarrow 1} 2^{1 /(1-x)}$ does not exist.

## 8. References

[Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.
[Ho] C. Hodgson, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.
[Wi] P. Wightwick, UMEP notes, 2010.

