Problem Sheet - Expressions

Problem Sheet -- Expressions
620-295 Semester I 2010

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 28 February 2010

(1) Expressions
(2) Inverse expressions
(3) Expression identities
(4) Trig identities
(5) Inverse function identities
(6) Taylor series

Expressions

"What is" is a synonym of "Define".

What is x 2 ?
What is e x ?
What is sin x ?
What is cos x ?
What is tan x ?
What is cot x ?
What is sec x ?
What is csc x ?
What is sinh x ?
What is cosh x ?
What is tanh x ?
What is coth x ?
What is sech x ?
What is csch x ?

Inverse Expressions

What is x ?
What is x1/2 ?
What is ln x ?
What is log x ?
What is sin -1 x ?
What is arcsin x ?
What is cos -1 x ?
What is arccos x ?
What is tan -1 x ?
What is arctan x ?
What is cot -1 x ?
What is arccot x ?
What is sec -1 x ?
What is arcsec x ?
What is csc -1 x ?
What is arccsc x ?
What is sinh -1 x ?
What is arcsinh x ?
What is cosh -1 x ?
What is arccosh x ?
What is tanh -1 x ?
What is arctanh x ?
What is coth -1 x ?
What is arccoth x ?
What is sech -1 x ?
What is arcsech x ?
What is csch -1 x ?
What is arccsch x ?

Expression identities

"Explain why" is a synonym for "Prove that". "Verify the identity" is another synonym for "Prove that".

Explain why 1 1 - x = 1 + x + x 2 + x 3 + .
Explain why x n - 1 x - 1 = 1 + x + x 2 + + x n - 1 .
Find all possibilities for c 0 c 1 c 2 so that f x = c 0 + c 1 x + c 2 x 2 + satisfies f x + y = f x f y .
Explain why e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + x 6 6 ! + .
Explain why ln x is the inverse function to e x .
Verify the identity e x + y = e x e y .
Verify the identity e - x = 1 e x .
Verify the identity e x n = e n x .
Verify the identity e 0 = 1 .
Verify the identity ln x y = ln x + ln y .
Verify the identity - ln x = ln 1 / x .
Verify the identity ln x n = n ln x .
Verify the identity ln 1 = 0 .
Explain why cos x = 1 - x 2 2 ! + x 4 4 ! - x 6 6 ! + .
Explain why sin x = x - x 3 3 ! + x 5 5 ! - x 7 7 ! + .
Verify the identity e i x = cos x + i sin x .
Verify the identity cos 2 x + sin 2 x = 1 .
Verify the identity sin - x = - sin x .
Verify the identity cos - x = cos x .
Verify the identity sin x + y = sin x cos y + cos x sin y .
Verify the identity cos x + y = cos x cos y - sin x sin y .
Verify the identity cos x = e i x + e - i x 2 .
Verify the identity sin x = e i x - e - i x 2 i .
Explain why cosh x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + .
Explain why sinh x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + .
Verify the identity e x = cosh x + sinh x .
Verify the identity cosh 2 x - sinh 2 x = 1 .
Verify the identity sinh - x = - sinh x .
Verify the identity cosh - x = cosh x .
Verify the identity sinh x + y = sinh x cosh y + cosh x sinh y .
Verify the identity cosh x + y = cosh x cosh y + sinh x sinh y .
Verify the identity cosh x = e x + e - x 2 .
Verify the identity sinh x = e x + e - x 2 .
Verify the identity arcsinhx = log (x+ x2+1 ) .
Verify the identity arccoshx = log (x+ x2-1 ) .
Verify the identity arctanht = 1 2 log ( 1+t 1-t ) .

Trig identities

Verify the identity tan x + y = tan x + tan y 1 - tan x tan y .
Verify the identity sin x / 2 = ± 1 - cos x 2 .
Verify the identity cos 3 x = cos 3 x - 3 cos x sin 2 x .
Verify the identity sin 3 x = 3 cos 2 x sin x - sin 3 x .
Verify the identity sin 2 A cot 2 A = 1 - sin A 1 + sin A .
Verify the identity tan B = cos B sin B cot 2 B .
Verify the identity tan V cos V sin V = 1 .
Verify the identity sin E cot E + cos E tan E = sin E + cos E .
Verify the identity 1 sec 2 x + 1 csc 2 x - 1 = 0 .
Verify the identity sec A - 1 sec A + 1 + cos A - 1 cos A + 1 = 0 .
Verify the identity sin V 1 + cot 2 V = csc V .
Verify the identity sin π / 2 - w cos π / 2 - w = cot w .
Verify the identity sec π / 2 - z = 1 sin z .
Verify the identity 1 + tan 2 π / 2 - x = 1 cos 2 π / 2 - x .
Verify the identity sin A csc A + cos A sec A = 1 .
Verify the identity sec B cos B - tan B cot B = 0 .
Verify the identity 1 csc 2 w + sec 2 w + 1 sec 2 w = 2 + sec 2 w csc 2 w .
Verify the identity sec 4 V - sec 2 V = 1 cot 4 V + 1 cot 2 V .
Verify the identity sin 4 x + cos 2 x = cos 4 x + sin 2 x .
Verify the identity tan 3 α = 3 tan α - tan 3 α 1 - 3 tan 2 α .
Verify the identity cot α / 2 = sin α 1 - cos α .
Verify the identity cos π / 6 - x + cos π / 6 + x = 3 cos x .
Verify the identity sin α + β sin α - β = sin 2 α - sin 2 β .
Verify the identity sin π / 3 - x + sin π / 3 + x = 3 cos x .
Verify the identity cos π / 4 - x - cos π / 4 + x = 2 sin x .
Verify the identity 2 sin α cos β = sin α + β + sin α - β .
Verify the identity 2 sin α sin β = cos α - β - cos α + β .
Verify the identity cos 2 θ = 2 sin π / 4 + θ sin π / 4 - θ
Verify the identity sin 2 A 2 = tan A 1 + tan 2 A .
Verify the identity cot x / 2 = 1 + cos x sin x .
Verify the identity sin 2 B cot B + tan B = 2 .
Verify the identity 1 - tan 2 θ 1 + tan 2 θ = cos 2 θ .
Verify the identity 1 + cos 2 A = 2 1 + tan 2 A .
Verify the identity tan 2 x tan x + 2 = tan 2 x tan x .
Verify the identity csc A sec A = 2 csc 2 A .
Verify the identity cot x = sin 2 x 1 - cos 2 x .
Verify the identity 1 - sin A = sin A 2 - cos A 2 2 .
Verify the identity cos 4 A = 2 cos 2 A + cos 2 2 A + 1 4 .
Verify the identity sin A + sin B sin A - cos A = tan A + B 2 tan A - B 2 .
Verify the identity sin α + sin 3 α cos α + cos 3 α = tan 2 α .
Verify the identity cos 2 A 1 + sin 2 A = cot A - 1 cot A + 1 .
Verify the identity cos A + sin A cos A - sin A = 1 + sin 2 A cos 2 A .
Verify the identity cot α - cot β = sin β - α sin α sin β .
Verify the identity tan θ csc θ cos θ = 1 .
Verify the identity cos 2 θ = cot 2 θ 1 + cot 2 θ .
Verify the identity 1 - sin A 1 + sin A = sec A - tan A 2 .
Verify the identity tan A - cot A 2 + 4 = sec 2 A + csc 2 A .
Verify the identity cos B cos A + B + sin B sin A + B = cos B .
Verify the identity tan A - sin A sec A = sin 3 A 1 + cos A .
Verify the identity 2 tan 2 A 1 + tan 2 A = 1 - cos 2 A .
Verify the identity tan 2 A = tan A + tan A cos 2 A .
Verify the identity sin 2 A = 2 tan A 1 + tan 2 A .
Verify the identity 4 sin A 1 - sin 2 A = 1 + sin A 1 - sin A - 1 - sin A 1 + sin A .
Verify the identity tan A + sin A = csc A + cot A csc A cot A .

Inverse function identities

Verify the identity cos tan -1 x = 1 1 + x 2 .
Verify the identity sin tan -1 x = x 1 + x 2 .
Verify the identity sin cos -1 x = 1 - x 2 .
Verify the identity tan cos -1 x = 1 - x 2 x .
Verify the identity cos sin -1 x = 1 - x 2 .
Verify the identity tan cot -1 x = 1 x .
Verify the identity cot cot -1 2 = 2 .
Verify the identity sin cot -1 x = 1 1 + x 2 .
Verify the identity cos cot -1 x = x 1 + x 2 .
Verify the identity sin -1 - x = - sin -1 x .
Verify the identity tan -1 - x = - tan -1 x .
Verify the identity tan -1 x = cot -1 1 / x .
Verify the identity tan -1 x = sin -1 x 1 + x 2 .
Verify the identity sin -1 x 1 + x 2 = cos -1 x 1 + x 2 .
Verify the identity arcsinh ( x 1-x2 ) = arctanhx .

Taylor series

Define the set [x] and give three example of elements of [x] .

Define the set [[ x]] and give three example of elements of [[x]] .

Define the set (x) and give three examples of elements of (x) .

Define the set (( x)) and give three examples of elements of ((x)) .

Let D:[x] [x] be a function such that
(D1) If f,g [x] then D(f+g) = D(f) + D(g) ,
(D2) If c and f[x] then D(cf) = cD(f) ,
(D3) If f,g [x] then D(fg) = fD(g) + D(f)g and
(D4) D(x) =1 .
Prove that if n>0 then D(xn) =nxn-1.

Write out the first ten terms of the series n = 0 xn n+1 .

Write out the first ten terms of the series n=0 xn n! .

Write out the first ten terms of the series n=1 (x-1)n n .

Write out the first ten terms of the series n=0 (-1)n xn n+2 .

Let D:[[x]] [[x]] be a function such that
(D1) If f,g [[x]] then D(f+g) = D(f) + D(g) ,
(D2) If c and f [[x]] then D(cf) = cD(f) ,
(D3) If f,g [[x]] then D(fg) = fD(g) + D(f)g and
(D4) D(x) =1 .
Prove that if f= c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + then ck = 1k! ( Dkf ) |x=0 .

Write 1-xn 1-x as an element of [x] .

Write ex as an element of [[x]] .

Write sinx as an element of [[x]] .

Write sin(1+x) as an element of [[x]] .

Write cosx as an element of [[x]] .

Write 1 1-x as an element of [[x]] .

Write (1+x) 7 as an element of [[x]] .

Write (1+x) 1/7 as an element of [[x]] .

Find the power series representation of 1 1+2x .

Find a series representation of 1 1+x2 .

Find a series representation of x 1+x .

Find the series representation of 1 (1+x)2 .

Find a series representation of arctanx .

Find a series representation of log(2+x) .

Find a series expansion of coshx .

Find a series expansion of 1 1-x .

Find a series expansion of log(1-x) .

Find a series expansion of log(1+x) .

Find a series expansion of log(1+x) log(1-x) .

Find a series expansion of sinhx .

Find a series expansion of log(1+2x) .

Find a series expansion of sinx .

Find a series expansion of sin(2x) .

Find a series expansion of cosx .

Find a series expansion of 1 1+x .

Find a series expansion of sinhx .

Find a series expansion of log(2x+1) .

Find a series expansion of (1+x) -2 .

Find a series expansion of sin(θ2) .

Find a series expansion of xsin3x .

Find a series expansion of cos2x .

Find a series expansion of t 1+t .

Find a series expansion of z e2z .

Find a series expansion of sin(x2) .

Find a series representation of ex3dx .

Find the power series representation of sinhx x dx .

Find an infinite series representation of -11 sinhx x dx .

Find a series expansion of coshx-1 x2 . dx .

Find an infinite series representation of 01 ex3dx .

Find a series expansion of 0t sin(x2) dx

Find the Taylor expansion of ex at x=0 .

Find the Taylor expansion of sinhx at x=0 .

Find the Taylor expansion of 11-x at x=0 .

Find the Taylor expansion of ex at x=2 .

Find the Taylor expansion of logx at x=1 .

Find the Taylor expansion of 1x2 at x=1 .

Find the Taylor series for sinx at the point a= 1 4 π .

Find the Taylor series for cosx at the point a= 1 3 π .

Find the Taylor series for 1 x at the point a=2 .

Find the Taylor series for ex at the point a=-3 .

Find a series representation for e2x in powers of x+1 .

Find a series representation for logx in powers of x-1 .

Find an alternate expression for the series n=1 n xn .

Find an alternate expression for the series n=1 n 2n .

Find an alternate expression for the series n=2 n (n-1) xn .

Find the sum of the series n=1 nxn-1 .

Find the sum of the series n=0 xn+1 n+1 .

Find the sum of the series n=1 xn n .

Find the sum of the series n=1 n 3n-1 .

Find the sum of the series n=1 1 n2n+1 .

Find the sum of the series n=1 n(n-1) ( 1 4 )n .

Find an alternate expression for the series n=1 nxn-1 .

Find an alternate expression for the series n=2 n (n-1) xn-2 .

Find an alternate expression for the series k=1 (-1) k+1 2kxk k .

References

[Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.

[Ho] C. Hodgson, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.

[Wi] P. Wightwick, UMEP notes, 2010.