Problem Set: Sequences 620-295 Semester I 2010

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 15 March 2010

(1) Sequence analysis(2) Definitions and proofs(3) Picard and Newton iteration

1. Sequence analysis

For each of the following sequences:

- (a) explicitly write out the first 7 terms,
- (b) graph the sequence,
- (c) determine if it is bounded,
- (d) determine if it is increasing or decreasing,
- (e) determine if it is Cauchy,
- (f) determine the sup and inf,
- (g) determine the lim sup and lim inf,
- (h) determine if it is convergent or divergent,
- (i) determine the limit if it is convergent,
- (m) determine if it is contractive.
- (1) Analyse the sequence $a_n = n$.
- (2) Analyse the sequence $a_n = (-1)^n n$.
- (3) Analyse the sequence $a_n = n^2$.
- (4) Analyse the sequence $a_n = 12n n^3$.

(5)

Analyse the sequence $a_n = n!$.

(6) Analyse the sequence
$$a_n = \frac{1}{n}$$
.

(7) Analyse the sequence
$$a_n = 3 - \frac{1}{n}$$
.

(8) Analyse the sequence
$$a_n = \frac{1}{n^p}$$
.

(9) Analyse the sequence
$$a_n = \frac{1}{n!}$$
.

(10) Analyse the sequence
$$a_n = \frac{n}{n(n+1)}$$
.

(11) Analyse the sequence
$$a_n = \frac{1}{n} - \frac{1}{n+1}$$
.

(12) Analyse the sequence
$$a_n = \frac{(-1)}{n+1}$$
.

(13) Analyse the sequence
$$a_n = \frac{(-1)^{n+1}}{n}$$
.

(14) Analyse the sequence
$$a_n = (-1)^n \left(1 + \frac{1}{n}\right)$$
.

(15) Analyse the sequence
$$a_n = \frac{n}{2n+1}$$
.

(16) Analyse the sequence
$$a_n = \frac{2n}{n+1}$$
.

(17) Analyse the sequence
$$a_n = \frac{n}{n^2 + 1}$$
.

(18) Analyse the sequence
$$a_n = \frac{3n+1}{2n+5}$$
.

(19) Analyse the sequence
$$a_n = \frac{n^2 - 1}{2n^2 + 3}$$
.

(20) Analyse the sequence
$$a_n = \frac{i^n}{n^2}$$
.

(21) Analyse the sequence
$$a_n = \frac{n+2i}{n}$$
.

(22) Analyse the sequence
$$a_n = \frac{4n+3}{4n^2+3n+1}$$
.

(23) Analyse the sequence
$$a_k = \frac{1}{(3k^4 - 7k^2 + 5)^{\frac{1}{3}}}$$

(24) Analyse the sequence
$$a_n = \frac{(n!)^2}{(2n)!}$$
.

(25) Analyse the sequence
$$a_n = \frac{(n!)^2 5^n}{(2n)!}$$
.

(26) Analyse the sequence
$$a_n = (-1)^n$$
.

(27) Analyse the sequence
$$a_n = n^{1/n}$$
.

(28) Analyse the sequence
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
.

(29) Analyse the sequence
$$a_n = e^{in\pi/7}$$
.

(30) Analyse the sequence
$$a_n = \sqrt{n}$$
.

(31) Analyse the sequence
$$a_n = \frac{1}{\sqrt{n}}$$
.

(32) Analyse the sequence
$$a_n = \sqrt{n+1} - \sqrt{n}$$
.

(33) Analyse the sequence
$$a_n = \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right)$$
.

(34) Let $x \in \mathbb{R}$ with |x| < 1. Analyse the sequence $a_n = x^n$.

(35) Let $x \in \mathbb{R}$ with x > 0. Analyse the sequence $a_n = x^{1/n}$.

(36) Let
$$x \in \mathbb{R}$$
. Analyse the sequence $a_n = \left(1 + \frac{x}{n}\right)^n$.

(37) Let
$$x \in \mathbb{R}$$
. Analyse the sequence $a_n = \frac{1 - x^{n+1}}{1 - x}$.

(38) Let $x \in \mathbb{R}$. Analyse the sequence $a_n = 1 + x + \dots + x^n$.

(39) Analyse the sequence given by
$$a_1 = 3$$
 and $a_n = \frac{1}{2} \left(a_{n-1} + \frac{5}{a_{n-1}} \right)$.

(40) Let
$$a \in \mathbb{R}$$
 with $a > 0$. Fix a positive real number x_1 . Analyse the sequence given by $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$.

(41) Let α , $\beta \in \mathbb{R}_{>0}$. Analyse the sequence given by $a_1 = \alpha$ and $a_{n+1} = \sqrt{\beta + a_n}$.

(42) Let α , $\beta \in \mathbb{R}_{>0}$. Analyse the sequence given by $a_1 = \alpha$ and $a_{n+1} = \beta + \sqrt{a_n}$.

(43) Analyse the sequence given by
$$x_1 = 1$$
 and $x_{n+1} = \frac{1}{2 + x_n}$.

(44) Fix a real number x_1 between 0 and 1. Analyse the sequence given by $x_{n+1} = \frac{1}{7} (x_n^3 + 2)$. Estimate the solution to $x^3 - 7x + 2 = 0$ to three decimal places and verify that the limit is a solution to the equation $x^3 - 7x + 2 = 0$.

(45) Analyse the sequence given by
$$a_1 = 0$$
, $a_{2k} = \frac{1}{2}a_{2k+1}$, and $a_{2k+1} = \frac{1}{2} + a_{2k}$.

(46) Analyse the sequence
$$a_n = \frac{n}{2n+3}$$
.

(47) Analyse the sequence
$$a_n = \frac{n}{n+1} - \frac{n+1}{n}$$
.

(48) Analyse the sequence
$$a_n = \frac{1-n}{n^3}$$
.

(49) Analyse the sequence
$$a_n = \frac{3n-1}{2n+5}$$
.

(50) Analyse the sequence
$$a_n = \frac{n+1}{\sqrt{n}}$$
.

(51) Analyse the sequence
$$a_n = \frac{\sqrt{n}}{n+1}$$
.

(52) Analyse the sequence
$$a_n = 1 + (-1)^{n+1}$$
.

(53) Analyse the sequence
$$a_n = n^{(-1)^n}$$
.

(54) Analyse the sequence
$$a_n = a_n$$
 when $a_n = \sqrt{3}$.

(55) Analyse the sequence
$$a_n = \frac{n}{2^n}$$
.

(56) Analyse the sequence
$$a_n = \cos \frac{n\pi}{2}$$
.

(57) Analyse the sequence
$$a_n = (1 + (-1)^n) \frac{1}{n}$$
.

(58) Analyse the sequence
$$a_n = \frac{4n^2 - 2n + \cos n}{3n^2 + 7n + 6}$$
.

(59) Analyse the sequence
$$a_n = \frac{3n-5}{\sqrt{2n^2+1} + \sqrt{3n^2+4}}$$
.

(60) Analyse the sequence
$$a_n = \frac{2n^2 + 6n + 2}{3n^3 - n^2 - n}$$
.

(61) Analyse the sequence
$$a_n = \sqrt{n^2 + 3n} - \sqrt{n^2 + 4}$$
.

(62) Analyse the sequence
$$a_n = \frac{1}{3n+5}$$
.

(63) Analyse the sequence
$$a_n = 3 + \frac{(-1)^n}{n}$$
.

(64) Analyse the sequence
$$a_n = \frac{n-2}{n+2}$$
.

(65) Analyse the sequence
$$a_n = \left(\frac{n}{25}\right)^{1/3}$$
.

(66) Analyse the sequence
$$a_n = \frac{2^{2n}}{n!}$$
.

- (67) Analyse the sequence given by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$. In particular, show that a_n is increasing and bounded above by 3.
- (68) Analyse the sequence given by $a_1 = 2$ and $a_{n+1} = 3 \frac{1}{n}$. In particular, show that a_n is increasing and $a_n < 3$ for all n.
- (69) Suppose the *n*th pass through a manufacturing process is modelled by the linear equations $x_n = A^n x_0, \text{ where } x_0 \text{ is the initial state of the system and } A = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}. \text{ Show that}$ $A^n = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{5} \end{pmatrix}^n \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}.$ Then with the initial state $x_0 = \begin{pmatrix} p \\ 1-p \end{pmatrix}$, calculate $\lim_{n \to \infty} x_n$. (70) The Fibbonaci sequence 0 + 1 + 2 + 3 + 5 = 13 is described by the difference equation E_{1-p}
 - The Fibbonaci sequence 0,1,1,2,3,5,8,13, ... is described by the difference equation $F_{k+2} = F_{k+1} + F_k$ and the initial conditions $F_0 = 0$, $F_1 = 1$. Writing $u_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$, show that $u_{k+1} = Au_k$, where

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Solve for u_k in terms of $u_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and show that $F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right),$

and therefore find the limit as $k \to \infty$ of the ratio F_{k+1}/F_k .

2. Definitions and proofs

- (1) What is a sequence?
- (2) What is a convergent sequence?
- (3) What is a divergent sequence?
- (4) What is the limit of a sequence?

- (5) What is the sup of a sequence?
- (6) What is the inf of a sequence?
- (7) What is the lim sup of a sequence?
- (8) What is the lim inf of a sequence?
- (9) What is a bounded sequence?
- (10) What is an increasing sequence?
- (11) What is a decreasing sequence?
- (12) What is a monotone sequence?
- (13) What is a Cauchy sequence?
- (14) What is a contractive sequence?
- (15) Prove that if (a_n) is a sequence in \mathbb{C} and (a_n) converges then $\lim_{n \to \infty} a_n$ is unique.
- (16) Prove that if (a_n) is a sequence in \mathbb{C} and (a_n) converges then (a_n) is bounded.
- (17) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n + b_n = a + b$.
- (18) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n b_n = ab$.
- (19) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ and $b_n \neq 0$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.
- (20) Prove that if (a_n) , (b_n) and (c_n) are sequences in \mathbb{R} and $\lim_{n \to \infty} a_n = \ell$ and $\lim_{n \to \infty} c_n = \ell$ and $a_n \le b_n \le c_n$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n \to \infty} b_n = \ell$.
- (21) Prove that if (a_n) , is a sequence in \mathbb{R} and (a_n) is increasing and bounded above then (a_n) converges.
- (22) Prove that if (a_n) , is a sequence in \mathbb{R} and (a_n) is not bounded then (a_n) diverges.
- (23) Find a sequence a_n in \mathbb{R} such that if $r \in [0, 1]$ there is a subsequence of a_n which converges to r.

3. Picard and Newton iteration

- (1) Let $f: (0, \frac{1}{2}\pi) \to \mathbb{R}$ is given by $f(x) = \frac{1}{2} \tan x$. Estimate numerically the solution to x = f(x) with $x \in (0, \frac{1}{2}\pi)$ using Picard iteration.
- (2) Let $f: (0, \frac{1}{2}\pi) \to \mathbb{R}$ is given by $f(x) = \frac{1}{2} \tan x$. Estimate numerically the solution to x = f(x) with $x \in (0, \frac{1}{2}\pi)$ using Newton iteration (let F(x) = x f(x)).
- (3) Show that the equation g(x) = x³ + x − 1 = 0 has a solution between 0 and 1. Transform the equation to the form x = f(x) for a suitable function f : [0, 1] → [0, 1]. Use Picard iteration to find the solution to 3 decimal places. (Try f(x) = 1/(x² + 1)).
- (4) Show that the equation g(x) = x⁴ 4x² x + 4 = 0 has a solution between √3 and 2. Transform the equation to the form x = f(x) for a suitable function f : [√3, 2] → [√3, 2]. Use Picard iteration to find the solution to 3 decimal places. (Try f(x) = √2 + √x).
- (5) Applying Newton's method to solve the equation $f(x) = x^2 2 = 0$ gives a sequence x_n defined recursively by $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$, for each $n \ge 1$. We choose $x_1 = 2$ as our initial approximate solution.
 - (a) Verify that $x_{n+1} = \frac{x_n}{1} + \frac{1}{x_n}$. Use this to calculate x_2 and x_3 .
 - (b) Show that if the limit $\lim_{n \to \infty} x_n = L$ exists, then it must satisfy $L^2 2 = 0$.
 - (c) Show, by induction on , that $\sqrt{2} < x_n \le 2$, for all *n*.
 - (d) Show that $x_{n+1} < x_n$, for all n.
 - (e) Deduce that the sequence x_n has a limit, and that $\lim_{n \to \infty} x_n = \sqrt{2}$.

4. References

[Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.

[Ho] <u>C. Hodgson</u>, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.
[Wi] P. Wightwick, UMEP notes, 2010.