Assignment 1 -- Expressions and Graphing 620-295 Semester I 2010

Reformatted 7 April 2010

1. Some definitions. Define the following:

(1)	tan <i>x</i>	(2)	$\cosh x$	(3)	tanh <i>x</i>	(4)	$\sin^{-1} x$
(5)	arctan x	(6)	$\csc^{-1} x$	(7)	arccosh <i>x</i>	(8)	$\operatorname{sech}^{-1} x$

2. Basic properties. Prove the following basic statements:

- (1) $\ln x$ is the inverse function to e^x . (2) $\ln(xy) = \ln x + \ln y$.
- (3) $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$

(5)
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 (6)

(7)
$$\operatorname{arccosh} x = \log(x + \sqrt{x^2 - 1}).$$

- 3. Trig Identities. Review your trig by proving the following equalities:
 - (1) $\sin^2 A \cot^2 A = (1 \sin A)(1 + \sin A).$ (2) $\frac{\sec A 1}{\sec A + 1} + \frac{\cos A 1}{\cos A + 1} = 0.$

(4) $\sin(x + y) = \sin x \cos y + \cos x \sin y$.

 $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y.$

$$\frac{(3)}{\csc A} + \frac{\cos A}{\sec A} = 1.$$

$$(4) \quad \tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}.$$

- (5) $\cos(\pi/4 x) \cos(\pi/4 + x) = \sqrt{2}\sin x.$ (6) $\cot(x/2) = \frac{1 + \cos x}{\sin x}.$
- (7) $\csc A \sec A = 2\csc 2A$. (8) $\frac{\sin \alpha + \sin 3\alpha}{\cos \alpha + \cos 3\alpha} = \tan 2\alpha$.
- (9) $\cos^2 \theta = \frac{\cot^2 \theta}{1 + \cot^2 \theta}$. (10) $\frac{2\tan^2 A}{1 + \tan^2 A} = 1 \cos 2A$.

4. Inverse expressions. Review your inverse trig functions by proving the following equalities:

(1) $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$ (2) $\sin^{-1}(-x) = -\sin^{-1} x$

(3)
$$\operatorname{arcsinh}\left(\frac{x}{\sqrt{1-x^2}}\right) = \operatorname{arctanh} x$$

5. Derivatives. Review the basics of derivatives with the following:

Let $D : \mathbb{Q}[x] \to \mathbb{Q}[x]$ be a function such that

(D1) If $f, g \in \mathbb{Q}[x]$ then D(f + g) = D(f) + D(g), (D2) If $c \in \mathbb{Q}$ and $f \in \mathbb{Q}[x]$ then D(cf) = cD(f), (D3) If $f, g \in \mathbb{Q}[x]$ then D(fg) = fD(g) + D(f)g and (D4) D(x) = 1.

- (1) Prove that if $n \in \mathbb{Z}_{>0}$ then $D(x^n) = nx^{n-1}$.
- (2) Prove that if $f = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \text{ then } c_k = \frac{1}{k!} (D^k f)|_{x=0}.$

6. Series expansions. Find a series expansion for each of the following:

(1) $\cos x$ (2) $\frac{1}{1+x^2}$ (3) $\cosh x$ (4) $\sinh x$ (5) $\frac{1}{1+x^2}$ (6) $x \sin^3 x$ (7) $\int 3$ (8) $\int f^{t} (x) x$

(5)
$$\frac{1}{1+x}$$
 (6) $x \sin 3x$ (7) $\int e^{x^3} dx$ (8) $\int_0^1 \sin(x^2) dx$

7. Alternate formulations of series expansions.

- (1) Find the Taylor series for e^x at the point a = -3.
- (2) Find an alternate expression for the series $\sum_{n=2}^{\infty} n(n-1)x^n$.

(3) Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{1}{n2^{n+1}}$$
.

8. Some basic graphs. Graph the following:

(1) $f(x) = x^2$ (2) $f(x) = x^{100}$ (3) $f(x) = x^{-100}$ (4) $f(x) = \cot x$ (5) $f(x) = x^{1/4}$ (6) $f(x) = x^{-1/4}$ (7) $f(x) = \operatorname{arccot} x$

9. Additional graphing. Make sure your graphing skills are at a level where they won't hamper performance later in the course by graphing the following:

(1)

$$f(x) = \begin{cases} 2+x, & \text{if } x > 0, \\ 2-x, & \text{if } x \le 0. \end{cases}$$
(2) $f(x) = x^3$
(3) $f(x) = 2x^3 + x^2 + 20x$

(4)
$$f(x) = x^{3}(x-2)^{2}$$

(5) $f(x) = \sqrt{x+2}$
(6) $f(x) = \frac{x^{2}}{\sqrt{x+1}}$
(7) $f(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -1, & \text{if } x < 0. \end{cases}$
(8) $f(x) = x^{2/3}(6-x)^{1/3}$
(9) $f(x) = \sin 2x - x$
(10) $y = e^{-x}$

10. General ellipses and hyperbolas. Recall how to graph ellipses and hyperbolas by graphing the following:

- (1) Graph f(x) = y, where $x^2 + y^2 2hx 2ky + h^2 + k^2 = r^2$, and h, k and r are constants.
- (2) Graph f(x) = y, where $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, and a and b are constants.

11. Using graphs to view sequences. Graph the following sequences:

(1)
$$a_n = n!$$
.
(2) $a_n = \frac{n}{n(n+1)}$
(3) $a_n = \frac{n}{2n+1}$
(4) $a_n = \frac{i^n}{n^2}$
(5) $a_n = \frac{(n!)^2 5^n}{(2n)!}$.
(6) $a_n = \sqrt{n}$.

12. Sequences in recursive form. Graph the following sequences:

- (1) Let $a \in \mathbb{R}$ with a > 0. Fix a positive real number x_1 and let $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$.
- (2) Graph the sequence given by $a_1 = 0$, $a_{2k} = \frac{1}{2}a_{2k+1}$, and $a_{2k+1} = \frac{1}{2} + a_{2k}$.

13. Detecting continuity from a graph.

(1) Let $k \in \mathbb{R}$. Graph

$$f(x) = \begin{cases} \frac{\sin 2x}{5x}, & \text{if } x \neq 0, \\ k, & \text{if } x = 0. \end{cases}$$

For which values of *k* is the function continuous?

(2) Graph

$$f(x) = \begin{cases} 1 + x^2, & \text{if } 0 \le x \le 1, \\ 2 - x, & \text{if } x > 1. \end{cases}$$

For which values of x is the function continuous?

(3) Graph

$$f(x) = \begin{cases} \sin x, & \text{if } x < 0, \\ x, & \text{if } x \ge 0. \end{cases}$$

For which values of x is the function continuous?

(4) Graph

$$f(x) = \begin{cases} x^3 - x^2 + 2x - 2, & \text{if } x \neq 1, \\ 4, & \text{if } x = 1. \end{cases}$$

For which values of x is the function continuous?

14. Detecting existence of limits from a graph.

- (1) Graph $y = \ln(x)$ and explain why $\lim_{x \to -1} \ln(x)$ does not exist.
- (2) Graph $y = 2^{1/(1-x)}$ and explain why $\lim_{x \to 1} 2^{1/(1-x)}$ does not exist.