Problem Set - Improper integrals

Problem Set: Improper integrals
620-205 Semester I 2010

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 8 April 2010

(1) Improper integrals: Rational functions
(2) Improper integrals: Exponential functions
(3) Improper integrals: Special functions
(4) Improper integrals: Analysis and applications

Improper Integrals: Rational functions

For each of the following integrals:

(a) graph the integrand,
(b) determine if the integral converges, and
(c) evaluate the integral as appropriate.

01 1x dx

01 1x3 dx

-11 (1-x2) n dx

limn 01 nyn-1 1+y dy

03 dx (x-1)2/3

1 1x dx

1 1x2 dx

Show that 1 1xp dx converges if p and p>1 .

Show that 1 1xp dx diverges if p and p1 .

0 1 x2+1 dx

01 1 x dx

-11 1 x2/3 dx

1 1 x1.001 dx

04 1 4-x dx

01 1 1-x2 dx

01 1 x0.999 dx

1 1 x dx

1 1 x3 dx

1 1 x3+1 dx

0 1 x3 dx

0 1 x3+1 dx

-11 1 x2 dx

-11 1 x2/5 dx

0 1 x dx

0 1 x+x4 dx

15 4x x2-1 dx

1 1 1+x2 dx

1 x2 (x-2) (x11+2 ) 1/4 dx

Let a,b with a<b . Analyse ab x -12 dx .

Let a,b with a<b . Analyse ab 1x dx .

Let α . Analyse 01 xα dx .

Let a . Analyse -aa 1x dx .

0 1 x+1 dx

Let m 0 . Analyse 0 t -m dt .

- 1 1+t2 dt

1 t -1/2 dt

1 t -3/2 dt

01 t -1/2 dt

01 t -3/2 dt

4 1 t2 dt

2.735 1 t1/3 dt

Let p >0 . Analyse 1 1 tp dt .

01 1 t- 12 dt

Improper Integrals: Exponential functions

For each of the following integrals:

(a) graph the integrand,
(b) determine if the integral converges, and
(c) evaluate the integral as appropriate.

3 e- 3x dx

0 e- x2 dx

0 x3 e- x2 dx

-b e x- ex dx

- e x- ex dx

1 e-x2 dx

0 e-x cosx dx

0 1 1+ex dx

0 e -t dt

0 e -x dx

- e-t2 dt

3 1 x+e2x dx

01 ex ex-1 dx

1 3+e-x 2x2/3-1 dx

Improper Integrals: Special functions

For each of the following integrals:

(a) graph the integrand,
(b) determine if the integral converges, and
(c) evaluate the integral as appropriate.

0 cosx dx .

0π/2 tanx dx

01 logx dx

1 (logx)4 1+x2 dx

-ππ sinx |x|β dx

01 t1/2 e et dt

0100 e t dt

3 logx x3/2+1 dx

0 | sinx x2+1 | dx

0 sinx x dx

0 xα-1 cosx dx

0 xα-1 sinx dx

B(u,v) = 01 tu-1 (1-t) v-1 dt

Let B(u,v) = 01 tu-1 (1-t) v-1 dt . Show that B(u,v) = 0 xu-1 (1+x) u+v dx by setting t= x 1+x .

Improper Integrals: Analysis and applications

Let A,r . Analyse 0 Ae-rt dt .

Show that if z= 4+x 1-x then -11 1+x 1-x dx = 0 4z2 (z2+1)2 dz . The improper integral on the left is an improper integral of the first kind and the improper integral on the right is an improper integral of the second kind.

Show that -11 1+x 1-x dx = π .

Let n 0 . Show that n!= 0 e-t tn dt .

Define Γ(z)= 0 e-t tz-1 dt . Show that Γ(1)=1 and Γ(z+1) =zΓ(z) .

Let f x = ex, if  x 0   and   x , e-x, if  x 0   and   x .
Show that 0 | f(x) | dx exists but 0 f(x) dx doesn't.
Let B(m+1) = 01 xm-1 (1-x) -1/2 dx .
(a) Explain why B(m) is improper for all values of m .
(b) Find the value of B(1) .
(c) Show that B(m+1) = 2m 2m+1 B(m) .
(d) Find the values of B(2) , B(3) and B(4) .


Let Γ(p) = 0 xp-1 e-x dx .
(a) Explain why Γ(p) is improper for all values of p .
(b) Evaluate Γ(1) and Γ(2) .
(c) Show that Γ(p+1) = p Γ(p) .
(d) Find the values of Γ(3) , Γ(4) and Γ(5) .


References

[Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.

[Hu] B.D. Hughes, 620-158 Accelerated Mathematics 2, Lectures by B.D. Hughes, University of Melbourne, 2009.

[TF] Thomas and Finney, Calculus and Analytic Geometry, Fifth Edition, Addison-Wesley 1979.