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(1) Intermediate value property
(2) Derivatives and differentiability
(3) Rolle's theorem
(4) Mean value theorem
(5) Taylor approximations

1. Intermediate value property

   (1) Find rigorous bounds on the location of all real zeros of f ( x) = x 7 − 27x 3 + 42.

   (2) Prove that x√  is continuous for x ≥ 0.

   (3) If f ( x) = x 3 − 5x 2 + 7x − 9, prove that there is a real number c such that f ( x) = 100.

   (4) Show that the equation x 5 − 3x 4 − 2x 3 − x + 1 = 0 has at least one solution between 0
and 1.

   (5) Show that the equation x + sin x = 1 has at least one solution in the interval [0, π/6].

   (6) Show that the equation x 5 + 10x + 3 = 0 has exactly one real solution.

   (7) Show that a polynomial of degree three has at most three real roots.

2. Derivatives and differentiability

   (1) Verify f ( x) = x 3 + 2x + 1 is differentiable at all points and work out the derivative.

   (2) Let f : a b[ ], → ℝ  and g : a b[ ], → ℝ  and let β γ, ∈ ℝ.  Let c ∈ a b[ ],  and assume that
f ′ c( ) and g ′ c( ) exist. Prove that β f + γg( )′ c( ) = β f ′ c( ) + γg ′ c( ).



   (3) Let f : a b[ ], → ℝ and g : a b[ ], → ℝ and let c ∈ a b[ ], . Assume that f ′ c( ) and g ′ c( ) exist.
Prove that f g( )′ c( ) = f ′ c( )g c( ) + f c( )g ′ c( ).

   (4) Let f : a b[ ], → ℝ be given by f x( ) = x and let c ∈ a b[ ], . Prove that f ′ c( ) = 1.

   (5) Let f : a b[ ], → ℝ  and let c ∈ a b[ ], .  Prove that if f ′ c( )  exists then f  is continuous at
x = c.

   (6) Prove that exp′( x) = exp( x).

   (7)
Discuss the differentiability of Heavisides's step function H ( x) =

⎧
⎨
⎩
⎪
⎪

1, if x > 0,

0, if x < 0.

   (8) Carefully state the chain rule and prove it.

   (9) Find derivatives of all orders of f ( x) = x k, for k ∈ ℤ> 0.

   (10) Discuss the existence of, and evaluate where possible, the first and second derivatives for

the function f ( x) =
⎧
⎨
⎩
⎪
⎪

1 + x, if x < 0,

1 + x + x 2, if x ≥ 0.
.

   (11) Prove that if α ∈ ℚ and f ( x) = x α then f ′( x) = αx α −1.

   (12) Give an example of a function with a local minimum at x = 0.

   (13) Give an example of a function with a local maximum at x = 0.

   (14) Give an example of a function with a stationary point  at  x = 0  that  is  neither a local
maximum or a local minimum.

   (15) Prove that if f  is differentiable on [a , b] with f ′(a) < 0 and f ′(b) > 0 then there exists a
point c ∈ (a , b) at which f ′(c) = 0. Do not assume that f ′( x) is continuous.

   (16) Let ϵ ∈ ℝ> 0. Find an interval around x = 0 with ||cos x − 1|| < ϵ.

   (17) Give a simple bound for cos x − cos y.

   (18) Use derivatives to prove that if x ∈ ℝ and x > 0 then x − x3

6 < sin x < x. Use this to show
that lim

x → 0
sin x

x = 1.

   (19) Use derivatives to prove that if x ∈ ℝ and x > 0 then 1 − x2

2 < cos x < 1 − x2

2 + x4

24 .

   (20) Let a , b ∈ ℝ and let f : [a , b] → ℝ be a function. Let c ∈ [a , b]. Carefully define f ′(c).

   (21) Let f : ℝ> 0 → ℝ be such that f  is differentiable at x = 1 and if x, y ∈ ℝ> 0  then f ( x y)
= f ( x) + f ( y). Show that



(a) if c ∈ ℝ> 0 then f  is differentiable at x = c,
(b) if c ∈ ℝ> 0 then f ′(c) = f ′(1) / c,
(c) Show that f  is infinitely differentiable.

   (22) Let f : ℝ → ℝ be such that f  is differentiable at x = 0 and if x, y ∈ ℝ then f ( x + y) = f (
x) f ( y). Show that

(a) if c ∈ ℝ then f  is differentiable at x = c,
(b) if c ∈ ℝ> 0 then f ′(c) = f ′(0) f (c),
(c) Show that f  is infinitely differentiable.

   (23)
Let f : ℝ → ℝ be given by f ( x) =

⎧
⎨
⎩
⎪
⎪

− x 2, if x ≤ 0,

x, if x > 0.

Is f  continuous at x = 0? Is f  differentiable at x = 0?

   (24)
Let f : ℝ → ℝ be given by f ( x) =

⎧
⎨
⎩
⎪
⎪

− x 2, if x ≤ 0,

x 3, if x > 0.

Is f  continuous at x = 0? Is f  differentiable at x = 0?

   (25)

Let f : ℝ → ℝ be given by f ( x) =
⎧
⎨
⎩
⎪
⎪

sin x
x

, if x < 0,

1 + x 2, if x ≥ 0.

Is f  continuous at x = 0? Is f  differentiable at x = 0?

   (26) Let a , b ∈ ℝ and assume that f : [a , b) → ℝ is differentiable on (a , b) and continuous on
[a , b). Assume that the limit lim

x → a+
f ′( x) = L exists. Prove that the right derivative f+ ′(a)

exists and that f+ ′(a) = L.

   (27) Let  a , b ∈ ℝ  and  assume  that  f : (a , b) → ℝ  is  differentiable  at  c.  Show  that  lim
h → 0+

f (c + h) − f (c − h)
2h

 exists and equals f ′(c). Is the converse true?

   (28) Prove that d
dx x√ = 1

2 x√
.

   (29) Prove that d
dx arcsin x = 1

1 − x 2√
.

3. Rolle's Theorem



   (1) State Rolle's theorem and draw a picture which illustrates the statement of the theorem.

   (2) State the mean value theorem and draw a picture which illustrates the statement of the
theorem.

   (3) Explain why Rolle's theorem is a special case of the mean value theorem.

   (4) Verify Rolle's theorem for the function f x( ) = x − 1( ) x − 2( ) x − 3( ) on the interval 1 3[ ], .

   (5) Verify Rolle's theorem for the function f x( ) = x − 2( )2 x − 3( )6 on the interval 2 3[ ], .

   (6) Verify Rolle's theorem for the function f x( ) = sin x − 1 on the interval π / 2 5π / 2[ ], .

   (7) Verify Rolle's theorem for the function f x( ) = e−x sin x on the interval 0 π[ ], .

   (8) Verify Rolle's theorem for the function f x( ) = x 3 − 6x 2 + 11x − 6.

   (9) Let  f x( ) = 1 − x 2 /3.  Show that  f -1( ) = f 1( )  but  there  is  no  number  c  in  the  interval

−1 1[ ],  such that 
d f
dx

|

|
|||x = c

= 0. Why does this not contradict Rolle's theorem?

   (10) Let f x( ) = x − 1( )−2 . Show that f 0( ) = f 2( ) but there is no number c in the interval 0 2[ ],

such that 
d f
dx

|

|
|||x = c

= 0. Why does this not contradict Rolle's theorem?

   (11) Discuss the applicability of Rolle's theorem when f x( ) = x − 1( ) 2x − 3( ) on the interval
1 ≤ x ≤ 3.

   (12) Discuss the applicability of Rolle's theorem when f x( ) = 2 + x − 1( )2 /3  on the interval
0 ≤ x ≤ 2.

   (13) Discuss the applicability of Rolle's theorem when f x( ) = x⌊ ⌋ on the interval −1 ≤ x ≤ 1.

   (14) At what point on the curve y = 6 − x − 3( )2  on the interval 0 6[ ],  is the tangent to the
curve parallel to the x-axis?

4. Mean value theorem

   (1) Verify the mean value theorem for the function f x( ) = x 2 /3 on the interval 0 1[ ], .

   (2) Verify the mean value theorem for the function f x( ) = ln x on the interval 1 e[ ], .

   (3) Verify the mean value theorem for the function f x( ) = x  on the interval a b[ ], , where a
and b are constants.

   (4) Verify the mean value theorem for the function f x( ) = lx 2 + mx + n on the interval a b[ ], ,
where l m n a, , ,  and b are constants.



   (5) Show that  the  mean  value  theorem is  not  applicable  to  the  function  f x( ) = x| |  in  the
interval -1 1[ ], .

   (6) Show that the mean value theorem is not applicable to the function f x( ) = 1 / x  in the
interval -1 1[ ], .

   (7) Find the points on the curve y = x 3 − 3x where the tangent is parallel to the chord joining
1 -2( ),  and 2 2( ), .

   (8) If  f x( ) = x 1 − ln x( ),  x > 0,  show that  a − b( )ln c = b 1 − ln b( ) − a 1 − ln a( ),  for  some
c ∈ a b[ ],  where 0 < a < b.

   (9) Let f ( x) = x 2 + 2x − 1 and let a = 0 and b = 1. Find all values c in the interval (a , b)
that satisfy the equation f (b) − f (a) = f ′(c)(b − a).

   (10) Let f ( x) = x 3  and let a = 0 and b = 3. Find all values c in the interval (a , b) that satisfy
the equation f (b) − f (a) = f ′(c)(b − a).

   (11) Let f ( x) = x 2/3 and let a = 0 and b = 1. Find all values c in the interval (a , b) that satisfy
the equation f (b) − f (a) = f ′(c)(b − a).

   (12) Use the mean value theorem to show that if x, y ∈ ℝ then ||sin x − sin y|| ≤ ||x − y||.

   (13) Use the mean value theorem to show that if x, y ∈ [2, ∞) then ||log x − log y|| ≤ 1
2 ||x − y||.

   (14) Use the mean value theorem to show that if x, y ∈ [1, ∞) then ||log x − log y|| ≤ ||x − y||.

   (15) Use  the  mean  value  theorem  to  show  that  if  x ∈ ℝ> 0  then  0 < ( x + 1)1/5 − x 1/5 <

(5x 4/5)-1. Find lim
x → ∞(( x + 1)1/5 − x 1/5).

   (16) Use the mean value theorem to show that if x ∈ ℝ> 1  then 0 < log( x + x√ ) − log x <
x −1/2 . Find lim

x → ∞(log(x + x√ ) − log x).

   (17) Use the mean value theorem to show that if a function f : (a , b) → ℝ  is differentiable
with f ′( x) > 0 for all x then f  is strictly increasing.

   (18) Use  the  mean  value  theorem  to  show  that  if  a  function  f : (a , b) → ℝ  is  twice
differentiable with f ′′( x) > 0 then f  is strictly convex. (A function f  is strictly convex if f
( t x + (1 − t)y) < t f ( x) + (1 − t) f ( y) for all x, y ∈ (a , b) and t, y ∈ (0, 1).

5. Taylor approximation

   (1) Compare f ( x) = 2√ sin x with its fifth order Taylor polynomial about x = π/4.



   (2) Discuss the Taylor polynomial approximations about x = 0 to f ( x) = (1 + x)−1.

   (3) Show how we can compute  log(1.1)  correct  to  three  decimal  places  by a  polynomial
approximation.

   (4)
Prove that if x ∈ ℝ and 0 ≤ x ≤ 1 then log(1 + x) = lim

n → ∞
∑

k = 1

n ( − 1)k −1 x k

k
.

   (5)
Use Taylor approximation to prove that if α ∈ ℝ> 0 then lim

x → ∞

x α

ex = 0.

   (6)
Use Taylor approximation to prove that if α ∈ ℝ> 0 then lim

x → ∞

log x
x α = 0.

   (7) Use Taylor approximation to prove that if α ∈ ℝ> 0 then lim
x → 0 +

x α log x = 0.

   (8) Let a = 0 and n = 4. If possible, construct the Taylor polynomial about x = a  of order n
for f ( x) = sin x. Explain clearly what has gone wrong if the Taylor polynomial cannot be
constructed.

   (9) Let a = π/4 and n = 4. If possible, construct the Taylor polynomial about x = a  of order
n for f ( x) = sin x. Explain clearly what has gone wrong if the Taylor polynomial cannot
be constructed.

   (10) Let a = 0 and n = 3. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = 1
1 + x

. Explain clearly what has gone wrong if the Taylor polynomial cannot be

constructed.

   (11) Let a = 1 and n = 3. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = 1
1 + x

. Explain clearly what has gone wrong if the Taylor polynomial cannot be

constructed.

   (12) Let a = 0 and n = 2. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = 1
1 + x√

. Explain clearly what has gone wrong if the Taylor polynomial cannot

be constructed.

   (13) Let a = 1 and n = 2. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = 1
1 + x√

. Explain clearly what has gone wrong if the Taylor polynomial cannot

be constructed.

   (14) Let a = − 1 and n = 3. If possible, construct the Taylor polynomial about x = a  of order
n  for  f ( x) = ||x + 1||3.  Explain  clearly  what  has  gone  wrong if  the  Taylor  polynomial
cannot be constructed.



   (15) Let a = 1 and n = 3. If possible, construct the Taylor polynomial about x = a  of order n
for f ( x) = ||x + 1||3. Explain clearly what has gone wrong if the Taylor polynomial cannot
be constructed.

   (16) Let a = 0 and n = 2. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) =
⎧
⎨
⎩
⎪
⎪

1 − x 2√ , if 0 ≤ x < 1,

cos x, if x < 0.
Explain clearly what has gone wrong if the Taylor polynomial cannot be constructed.

   (17) Use derivatives to derive the Taylor polynomial for f ( x) = exp x about x = 0.

   (18) Use derivatives to derive the Taylor polynomial for f ( x) = sin x about x = 0.

   (19) Use derivatives to derive the Taylor polynomial for f ( x) = cos x about x = 0.

   (20) Use derivatives to derive the Taylor polynomial for f ( x) = log(1 + x) about x = 0.

   (21) Use derivatives to derive the Taylor polynomial for f ( x) = log(1 − x) about x = 0.

   (22) Using the remainder estimate from Taylor's theorem, determine a bound on the error in
approximating cosh 1 by the degree 8 Taylor polynomial about x = 0 for cosh x. You may
use the facts: sinh 1 < cosh 1 < 3 and 9! ≈ 3.6 ⋅ 105.

   (23) Using the remainder estimate from Taylor's theorem, determine a bound on the error in
approximating sinh 1 by the degree 9 Taylor polynomial about x = 0 for sinh x. You may
use the facts: sinh 1 < cosh 1 < 3 and 10! ≈ 3.6 ⋅ 106.

   (24) Write down the degree 5 Taylor polynomial for f ( x) = sin x.  Use Taylor's  theorem to
write down an expression for the error R5( x), where you may assume that 0 < x < π/2. In
what interval does the unknown constant c lie? Hence show that

x 6

6!
< R5( x) < 0.

Use this inequality and
sin x = P5( x) + R5( x)

to find upper and lower bounds for sin x in terms of P5( x).

   (25) Let a = 1 and n = 4. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = x√ . Explain clearly what has gone wrong if the Taylor polynomial cannot be
constructed.

   (26) Let a = 1 and n = 4. If possible, construct the Taylor polynomial about x = a  of order n

for f ( x) = 1
x

. Explain clearly what has gone wrong if the Taylor polynomial cannot be

constructed.

   (27) Let a = 1 and n = 4. If possible, construct the Taylor polynomial about x = a  of order n



for f ( x) = tan x. Explain clearly what has gone wrong if the Taylor polynomial cannot be
constructed.

   (28) Let a = 0  and n = 3  and let  x ∈ ℝ  with −1 ≤ x ≤ 1.  Let  f ( x) = cos x.  Construct  the
Taylor polynomial for f ( x) of order n about x = a  and find a close bound for ||Rn( x)||,
where Rn( x) = f ( x) − Pn( x).

   (29) Let a = 0  and n = 2  and let x ∈ ℝ  with −0.5 ≤ x ≤ 0.5.  Let f ( x) = ex.  Construct the
Taylor polynomial for f ( x) of order n about x = a  and find a close bound for ||Rn( x)||,
where Rn( x) = f ( x) − Pn( x).

   (30) Let a = π/4 and n = 5 and let x ∈ ℝ with 0 ≤ x ≤ π/2. Let f ( x) = sin x. Construct the
Taylor polynomial for f ( x) of order n about x = a  and find a close bound for ||Rn( x)||,
where Rn( x) = f ( x) − Pn( x).

   (31) Let  a = 0  and  n = 4  and  let  x ∈ ℝ  with  0 ≤ x ≤ 1.  Let  f ( x) = sinh x.  Construct  the
Taylor polynomial for f ( x) of order n about x = a  and find a close bound for ||Rn( x)||,
where Rn( x) = f ( x) − Pn( x).

   (32) Use Taylor polynomials to approximate e√  to four decimal places.

   (33) Use Taylor polynomials to approximate e−1 to four decimal places.

   (34) Use Taylor polynomials to approximate log 1.5 to four decimal places.

   (35) Use Taylor polynomials to approximate sinh 0.5 to four decimal places.

   (36) Let a = π/4 and n = 5 and let x ∈ ℝ with 0 ≤ x ≤ π/2. Let f ( x) = sin x. Construct the
Taylor polynomial for f ( x)  of order nabout x = a  and find a close bound for ||Rn( x)||,
where  Rn( x) = f ( x) − Pn( x).  Use  this  information to  estimate  sin 35°  to  five decimal
places.

   (37) For what values of x can we replace 1 + x√  by 1 + 1
2 x with an error of less than 0.01?

   (38) Write down a polynomials approximation for f ( x) = sin x  at x = 0. How many terms do
you need for the approximation to be correct to three decimal places if ||x|| < 0.5?

   (39) An electric dipole on the x-axis consists of a charge Q at x = 1 and a charge −Q at x = −
1. The electric field E at the point x = R on the x-axis is given (for R > 1) by

E =
kQ

( R − 1)2
−

kQ
( R + 1)2

,

where k is a positive constant whose value depends on the units. Expand E as a series in 1
R,

giving the first two nonzero terms.

   (40) Write a quadratic approximation for f ( x) = x 1/3 near 8 and approximate 91/3. Estimate the
error and find the smallest interval that you can be sure contains the value.



   (41) Write a quadratic approximation for f ( x) = x −1  near 1 and approximate 1/1.02. Estimate
the error and find the smallest interval that you can be sure contains the value.

   (42) Write a quadratic approximation for f ( x) = ex  near 0 and approximate e−0.5. Estimate the
error and find the smallest interval that you can be sure contains the value.

   (43)
(a) From Taylor's theorem write down an expansion for the remainder when the Taylor
polynomial of degree N  for ex  (about x = 0) is subtracted from ex. In what interval does
the unknown constant c lie, if x > 0?

(b) Show that if x > 0 then the remainder has the bounds 
x n+1

( n + 1)!
< RN < ex x n+1

( n + 1)!
 and

use the sandwich rule to show that RN → 0 as N → ∞. This proves that the Taylor series
for ex does converge to ex, for any x > 0.
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