Problem Set -- Numbers and Ordered fields 620-295 Semester I 2010

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 2 May 2010

(1) Integers \mathbb{Z}

(2) Rationals \mathbb{Q}

(3) Real numbers \mathbb{R}

(4) Complex numbers C

(5) Fields and Ordered fields

1. Integers \mathbb{Z}

- (1) Determine the solutions to the equation m + 1 = 2 if $m \in \mathbb{Z}_{>0}$, if $m \in \mathbb{Z}_{\geq 0}$, if $m \in \mathbb{Z}$, and if $m \in \mathbb{Q}$.
- (2) Determine the solutions to the equation m + 2 = 1. if $m \in \mathbb{Z}_{>0}$, if $m \in \mathbb{Z}_{\geq 0}$, if $m \in \mathbb{Z}$, and if $m \in \mathbb{Q}$.
- (3) Determine the solutions to the equation 2m = 4 if m ∈ Z_{>0}, if m ∈ Z_{≥0}, if m ∈ Z, and if m ∈ Q.
- (4) Determine the solutions to the equation 2m = 3 if m ∈ Z_{>0}, if m ∈ Z_{>0}, if m ∈ Z, and if m ∈ Q.
- (5) Determine the solutions to the equation $0 \cdot m = 42$ if $m \in \mathbb{Z}_{>0}$, if $m \in \mathbb{Z}_{\geq 0}$, if $m \in \mathbb{Z}$, and if $m \in \mathbb{Q}$.
- (6) Determine the solutions to the equation 0 ⋅ m = 0 if m ∈ Z_{>0}, if m ∈ Z_{≥0}, if m ∈ Z, and if m ∈ Q.

- (7) Define *even* and prove that if the square of an integer is even then the integer itself is even.
- (8) Prove that if $m \in \mathbb{Z}_{>0}$ and *m* is divisible by 12 then its square is also divisible by 12.
- (9) Prove that if $m \in \mathbb{Z}_{>0}$ and m^2 is divisible by 12 then *m* also divisible by 12.
- (10) Describe the subset S of Z_{>0} such that if a ∈ S and n ∈ Z_{>0} then n is divisible by a if and only if n² is divisible by a.
- (11) Prove that, for any 1993 integers, there is a subset whose sum is divisible by 1993.
- (12) Prove that the square of an even integer is even.
- (13) Prove that the product of two odd integers is odd.
- (14) Prove that the sum of two odd integers is even.
- (15) Prove that the cube of an odd integer is odd.
- (16) Prove that if k is an odd integer then $k^2 1$ is divisible by 4.
- (17) Rewrite $2 + 4 + 6 + \dots + 2n$ in summation notation.
- (18) Rewrite $1 + 4 + 7 + \dots + (3n 2)$ in summation notation.
- (19) Rewrite $2 + 7 + 12 + \dots + (5n 3)$ in summation notation.
- (20) Rewrite $1 + 2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + n2^{n-1}$ in summation notation.
- (21) Rewrite $1^2 + 2^2 + 3^2 + \dots + n^2$ in summation notation.
- (22) Rewrite $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)}$ in summation notation.
- (23) Rewrite $3 + 3^2 + 3^3 + \dots + 3^n$ in summation notation.
- (24) Rewrite $(1 + 2^5 + \dots + n^5) + (1 + 2^7 + \dots + n^7)$ in summation notation.
- (25) Rewrite $1 + r + r^2 + \dots + r^n$ in summation notation.
- (26) Compute $\sum_{k=1}^{n} 1$.
- (27) Compute $\sum_{k=1}^{n} k$.

(28) Let
$$a, r \in \mathbb{R}$$
. Compute $\sum_{k=1}^{n} ar^{k}$.

- (29) Given 5 points on a square of side length 1, show that there are two points of the five for which the distance apart is no more than $\frac{\sqrt{2}}{2}$.
- (30) Suppose that the points of the plane are each colored eqither red, yellow or blue. Prove that there are two points at distance one apart which have the same color.
- (31) Assume that the area of a square of side length a is a^2 . State and prove the Pythagorean theorem.

2. Rational numbers Q

- (1) Give an example of $s \in \mathbb{Q}$ which has more than one representation as a fraction.
- (2) Show that $\sqrt{2} \notin \mathbb{Q}$.
- (3) Show that $\sqrt{3} \notin \mathbb{Q}$.
- (4) Show that $\sqrt{15} \notin \mathbb{Q}$.
- (5) Show that $2^{1/3} \notin \mathbb{Q}$.
- (6) Show that $11^{1/4} \notin \mathbb{Q}$.
- (7) Show that $16^{1/5} \notin \mathbb{Q}$.
- (8) Show that $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- (9) Show that the number $e^1 = 2.71828...$ is irrational by using the series expansion $e^1 = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ...$

If $e^1 = p/q$ where p and q are positive integers, consider $q!e^1$ to get a contradiction.

- ⁽¹⁰⁾ Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Define carefully what $\frac{a}{b} = \frac{c}{d}$ means and prove that if $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{e}{f}$ then $\frac{a}{b} = \frac{e}{f}$.
- (11) Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Define carefully $\frac{a}{b} + \frac{c}{d}$ and $\frac{a}{b} \cdot \frac{c}{d}$.
- ⁽¹²⁾ Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Prove carefully that if $\frac{a}{b} = \frac{c}{d}$ then $\frac{a}{b} + \frac{e}{f} = \frac{c}{d} + \frac{e}{f}$.
- ⁽¹³⁾ Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Prove carefully that if $\frac{a}{b} = \frac{c}{d}$ then $\frac{a}{b} \cdot \frac{e}{f} = \frac{c}{d} \cdot \frac{e}{f}$.

(14) Let
$$\frac{a}{b}$$
, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Prove carefully $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$.
(15) Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Prove carefully that if $\frac{a}{b} + \frac{c}{d} = \frac{c}{d}$ then $\frac{a}{b} = \frac{0}{1}$.
(16) Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Prove carefully that if $\frac{a}{b} + \frac{c}{d} = \frac{0}{7}$ then $\frac{c}{d} = \frac{-a}{b}$.
(17) Compute $\left(27^{\frac{1}{3}}\right)^4$ and $27^{\left(4+\frac{1}{3}\right)}$ and graph the result.
(18) Compute $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots$.
(19) Compute $1 \cdot 2$, $1 \cdot 2 \cdot 3$, $1 \cdot 2 \cdot 3 \cdot 4$, $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ and $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$.
(20) Compute $\frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \cdots$.

3. The real numbers \mathbb{R}

- (1) Give an example of $s \in \mathbb{R}$ which has more than one decimal expansion.
- (2) Show that .9999... = 1.00000....
- (3) Show that the sum of two irrational numbers need not be irrational.
- (4) Show that the product of two irrational numbers need not be irrational.
- (5) Compute the decimal expansion of $\frac{3651}{342}$.
- (6) Let x, y ∈ ℝ be given by x = .98765432109876543210987... and y = 1.01001000100001....
 Compute the first 10 decimal places of xy.
- (7) Let $f : \mathbb{Q} \to \mathbb{R}$ be a function such that f(1/1) = 1.000..., f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b).
 - (a) Show that f(1/8) = 0.125000...
 - (b) Show that f is not surjective.
- (8) Express 0.1111... as a rational number.
- (9) Express 2.6666... as a rational number.
- (10) Express 0.9999... as a rational number.

- (11) Express 0.349999... as a rational number.
- (12) Express 0.37373737... as a rational number.
- (13) Express 0.00101010101... as a rational number.
- (14) Give an example of a decimal expansion that cannot be expressed as a rational number.
- (15) Show that the decimal expansion of a rational number is eventually repeating.
- (16) Show that any decimal expansion which is eventually repeating represents a rational number.
- (17) State and prove the Pythagorean Theorem.
- (18) Compute the decimal expansion of $\sqrt{2}$ to 10 digits.
- (19) Compute the decimal expansion of π to 10 digits.
- (20) Compute the decimal expansion of $2\sqrt{2}$ to 10 digits.
- (21) Compute the decimal expansion of π^2 to 10 digits.
- (22) Compute the decimal expansion of $-\sqrt{2}$ to 10 digits.
- (23) Compute the decimal expansion of $1/\sqrt{2}$ to 10 digits.

4. Complex Numbers C

- (1) Define the following sets and give examples of elements of each:
 - (a) the set of positive integers,
 - (b) the set of nonnegative integers,
 - (c) the set of integers,
 - (d) the set of rational numbers,
 - (e) the set of real numbers,
 - (f) the set of complex numbers,
 - (g) the set of algebraic numbers.
- (2) Find a complex number z such that z + w = w for all complex numbers w.
- (3) Find a complex number z such that zw = w for all complex numbers w.
- (4) Graph $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Q} , \mathbb{R} , and $\overline{\mathbb{Q}}$, as subsets of \mathbb{C} .
- (5) State the fundamental theorem of algebra.
- (6) Compute (3 7i) + (2 + 5i) and graph the result.

- (7) Compute (-12 + 3i) (7 5i) and graph the result.
- (8) Compute (4 + 8i)(2 3i) and graph the result.
- (9) Compute $\frac{-15+i}{4+2i}$ and graph the result.
- (10) Compute $(3 2i)^3$ and graph the result.
- (11) Compute $\sqrt{2i}$ and graph the result.

(12) Compute
$$\frac{1}{a+bi}$$
 and graph the result, where $a, b \in \mathbb{R}$.

- (13) Compute (3 5i) + (7 + 2i) and graph the result.
- (14) Compute (5-2i) (3-6i) and graph the result.
- (15) Compute (2 4i)(3 + 2i) and graph the result.

(16) Compute
$$\frac{6-i}{4+2i}$$
 and graph the result.

- (17) Compute $1^{\frac{1}{4}}$ and graph the result.
- (18) Compute $16^{\frac{1}{4}}$ and graph the result.
- (19) Compute and graph $(27^{1/3})^4$.
- (20) Compute and graph $27^{(4+1/3)}$.

(21) Compute and graph
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^3$$
.

- (22) Compute and graph $(1+i)^n + (1-i)^n$, for $n \in \mathbb{Z}_{\geq 0}$.
- (23) Let z = x + yi with $x, y \in \mathbb{R}$. Show that

$$z^{-1} = \frac{1}{|z|^2}(x - yi).$$

- (24) Let z = x + iy with $x, y \in \mathbb{R}$. Compute and graph $\frac{1}{z}$.
- (25) Let z = x + iy with $x, y \in \mathbb{R}$. Compute and graph z^4 .

(26) Let
$$z = x + iy$$
 with $x, y \in \mathbb{R}$. Compute and graph $\left| \frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \right|$.

(27) Show that the conjugate of $\frac{z}{z^2 + 1}$ is equal to $\frac{\overline{z}}{\overline{z^2 + 1}}$.

5. Fields and Ordered fields

- (1) Define (a) field and (b) ordered field.
- (2) Let \mathbb{F} be a field. Prove that if $x \in \mathbb{F}$ then $0 \cdot x = x$.
- (3) Let \mathbb{F} be a field. Prove that if $x \in \mathbb{F}$ then -(-x) = x.
- (4) Let \mathbb{F} be a field. Prove that if $x \in \mathbb{F}$ and $x \neq 0$ then $(x^{-1})^{-1} = x$.
- (5) Let \mathbb{F} be a field. Prove that if $x \in \mathbb{F}$ then $x \cdot (-1) = -x$.
- (6) Let \mathbb{F} be a field. Prove that if $x, y \in \mathbb{F}$ then (-x)y = -xy.
- (7) Let \mathbb{F} be a field. Prove that if $x, y \in \mathbb{F}$ then (-x)(-y) = xy.
- (8) Let \mathbb{F} be an ordered field. Prove that if $a \in \mathbb{F}$ and a > 0 then -a < 0.
- (9) Let \mathbb{F} be an ordered field. Prove that if $a \in \mathbb{F}$ and $a \neq 0$ then $a^2 > 0$.
- (10) Let \mathbb{F} be an ordered field. Prove that if $a \in \mathbb{F}$ and a > 0 then $a^{-1} > 0$.
- (11) Let \mathbb{F} be an ordered field. Prove that if $a, b \in \mathbb{F}$ and a > 0 and b > 0 then ab > 0.
- (12) Let \mathbb{F} be an ordered field. Prove that if $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$ then $a + b \ge 0$.
- (13) Let \mathbb{F} be an ordered field. Prove that if $a, b \in \mathbb{F}$ and 0 < a < b and then $b^{-1} < a^{-1}$.
- (14) Let \mathbb{F} be an ordered field. Prove that if $a, b \in \mathbb{F}$ and $a \le b$ then $a^2 \le b^2$.
- (15) Let \mathbb{F} be an ordered field. Prove that if $a, b \in \mathbb{F}$ and $a^2 \leq b^2$ then $a \leq b$.
- (16) Let \mathbb{F} be an ordered field. Prove that 1 > 0.

6. References

- [Ca] <u>S. Carnie</u>, 620-143 Applied Mathematics, Course materials, 2006 and 2007.
- [Ho] C. Hodgson, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.
- [Hu] B.D. Hughes, 620-158 Accelerated Mathematics 2 Lectures, 2009.
- [Wi] <u>P. Wightwick</u>, UMEP notes, 2010.