Problem Set -- Sets, Orders and functions 620-295 Semester I 2010

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 2 May 2010

(1) Absolute value and inequalities
(2) Induction, or perhaps not
(3) Orders on Z, Q, ℝ, C
(4) Cardinality
(5) Sets and functions

1. Absolute value and inequalities

- (1) Let $x \in \mathbb{R}$. Define |x|.
- (2) Let $x \in \mathbb{C}$. Define |x|.
- (3) Let $x \in \mathbb{R}^n$. Define |x|.
- (4) Let $x \in \mathbb{R}$. Show that |x| = |x + 0i|.
- (5) State and prove Lagrange's identity for \mathbb{R} .
- (6) State and prove the Schwarz identity for \mathbb{R} .
- (7) State and prove Lagrange's identity for \mathbb{R}^2 .
- (8) State and prove the Schwarz identity for \mathbb{R}^2 .
- (9) Let $x \in \mathbb{R}^n$. Show that |-x| = |x|.
- (10) Let $x, y \in \mathbb{R}$. Show that $|x + y| \le |x| + |y|$.
- (11) Let $x, y \in \mathbb{C}$. Show that $|x + y| \le |x| + |y|$.

- (12) Let $x, y \in \mathbb{R}^n$. Show that $|x + y| \le |x| + |y|$.
- (13) Let $x, y, z \in \mathbb{R}^n$. Show that $|x + y + z| \le |x| + |y| + |z|$.
- (14) Let $x, y \in \mathbb{C}$. Show that $|x + y|^2 + |x y|^2 = 2(|x|^2 + |y|^2)$. Is this identity true for $x, y \in \mathbb{R}^n$?
- (15) Let $x, y \in \mathbb{C}$. Show that $|x + y|^2 = |x|^2 + |y|^2 + 2\operatorname{Re}(x\bar{y})$.
- (16) Let $x, y \in \mathbb{R}$. Show that $|x + y| \ge ||x| |y||$.
- (17) Let $x, y \in \mathbb{R}$. Show that $|x y| \ge ||x| |y|||$.
- (18) Let $x, y, z \in \mathbb{R}$. Show that $|x + y + z| \ge ||x| |y| |z||$.
- (19) For x ∈ R, give solutions to the following inequalities in terms of intervals:
 (a) |x| > 3.
 (b) |1 + 2x| ≥ 4.
 (c) |x + 2| ≥ 5.
- (20) For x ∈ R, rewrite each of the following inequalities in terms of intervals:
 (a) |x + 3| > 1
 (b) |x 2| < 3
 (c) |x + 2| ≤ 2 and |x| > 1
 (d) |x + 2| ≤ 2 or |x| > 1
- (21) For x ∈ R, give solutions to the following inequalities in terms of intervals:
 (a) |x 2| < 3 or |x + 1| < 1.
 (b) |x 2| < 3 and |x + 1| < 1.
 (c) |x 5| < |x + 1|.
- (22) Let $a, b \in \mathbb{R}$ and let $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < |b|$. Show that $\left|\frac{a+\varepsilon}{b+\varepsilon}\right| \le \frac{|a|+\varepsilon}{|b|+\varepsilon}$.

(23) Prove that if $a_1, a_2, \ldots, a_n \in \mathbb{R}$ then $\left|\sum_{k=1}^n a_k\right| \le \sum_{k=1}^n |a_k|$. Is this identity true for a_1, a_2, \ldots

$$, a_n \in \mathbb{R}^n$$
?

(24) Prove that if $a_1, a_2, ..., a_n \in \mathbb{R}$ then $\left|\sum_{k=1}^n a_k\right| \le |a_p| - \sum_{k=1, k \ne p}^n |a_k|$. Is this identity true for

 $a_1, a_2, ..., a_n \in \mathbb{R}^n$?

- (25) Find the minimal $N \in \mathbb{Z}_{>0}$ such that $n < 2^n$ for all $n \ge N$.
- (26) Find the minimal $N \in \mathbb{Z}_{>0}$ such that $n! > 2^n$ for all $n \ge N$.
- (27) Find the minimal $N \in \mathbb{Z}_{>0}$ such that $2^n > 2n^3$ for all $n \ge N$.
- (28) (Bernoulli's inequality) Prove that if $a \in \mathbb{R}$ and a > -1 then $(1 + a)^n \ge 1 + na$ for $n \in \mathbb{Z}_{>0}$.
- (29) Prove that if $x \in \mathbb{R}$ then $1 + x \le e^x$.
- (30) Prove that if $x \in \mathbb{R}_{>0}$ then $\log x \ge \frac{x-1}{x}$.
- (31) Prove that if $x, y \in \mathbb{R}_{\geq 0}$ and $p \in \mathbb{R}$ with $0 then <math>(x + y)^p \le x^p + y^p$.
- (32) (Jensen's inequality) Let *I* be an interval in \mathbb{R} and let $f : I \to \mathbb{R}$ be a convex function. If $x_1, \ldots, x_n \in \mathbb{R}$ and $t_1, \ldots, t_n \in [0, 1]$ with $t_1 + \cdots + t_n = 1$, then $f(t_1x_1 + \cdots + t_nx_n) \leq t_1 f(x_1) + \cdots + t_n f(x_n)$.
- (33) If $x_1, ..., x_n \in \mathbb{R}_{\geq 0}$ and $t_1, ..., t_n \in \mathbb{R}_{\geq 0}$ with $t_1 + \dots + t_n = 1$, then $t_1 x_1 + \dots + t_n x_n \geq x_1^{t_1} \dots x_n^{t_n}$.

2. Induction, or perhaps not

- (1) Prove that if $n \in \mathbb{Z}_{>0}$ then 3 is a factor of $n^3 n + 3$.
- (2) Prove that if $n \in \mathbb{Z}_{>0}$ then 9 is a factor of $10^{n+1} + 3 \cdot 10^n + 5$.
- (3) Prove that if $n \in \mathbb{Z}_{>0}$ then 4 is a factor of $5^n 1$.
- (4) Prove that if $n \in \mathbb{Z}_{>0}$ then x y is a factor of $x^n y^n$.
- (5) Prove that if $n \in \mathbb{Z}_{>0}$ then $7^{2n} 48n 1$ is divisible by 2304.
- (6) Prove that if $n \in \mathbb{Z}_{>0}$ then $2 + 4 + 6 + \dots + 2n = n(n+1)$.
- (7) Prove that if $n \in \mathbb{Z}_{>0}$ then $1 + 4 + 7 + \dots + (3n 2) = \frac{1}{2}n(3n 1)$.
- (8) Prove that if $n \in \mathbb{Z}_{>0}$ then $2 + 7 + 12 + \dots + (5n 3) = \frac{1}{2}n(5n 1)$.
- (9) Prove that if $n \in \mathbb{Z}_{>0}$ then $1 + 2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + n2^{n-1} = 1 + (n-1)2^n$.
- (10) Prove that if $n \in \mathbb{Z}_{>0}$ then $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.

(11) Prove that if
$$n \in \mathbb{Z}_{>0}$$
 then $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$.

(12) Prove that if $n \in \mathbb{Z}_{>0}$ then $3 + 3^2 + 3^3 + \dots + 3^n = \frac{3}{2}(3^n - 1)$.

(13) Prove that if
$$n \in \mathbb{Z}_{>0}$$
 then $(1+2^5+\dots+n^5)+(1+2^7+\dots+n^7)=2\left(\frac{n(n+1)}{2}\right)^4$.

(14) Prove that if
$$n \in \mathbb{Z}_{>0}$$
 then $1 + r + r^2 + \dots + r^n = \frac{1 - r^n}{1 - r}$.

(15) Prove that if
$$n \in \mathbb{Z}_{>0}$$
 then $\sum_{k=1}^{n} (2k-1) = n^2$.

(16) Prove that $\sum_{k=1}^{n} k = \frac{1}{2} n(n+1).$

(17) Prove that
$$\sum_{k=1}^{n} (3k-2) = \frac{1}{2}n(3n-1).$$

(18) Prove that
$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1).$$

(19) Prove that
$$\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$$
.

(20) Prove that
$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$
.

(21) Prove that
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
.

- (22) Define a sequence by $a_1 = 0$, $a_{2k} = \frac{1}{2}a_{2k-1}$ and $a_{2k+1} = \frac{1}{2} + a_{2k}$. Show that $a_{2k} = \frac{1}{2} \left(\frac{1}{2}\right)^k$.
- (23) Prove that if $n \in \mathbb{Z}_{>0}$ then 3 is a factor of $n^3 n + 3$.
- (24) Prove that if $n \in \mathbb{Z}_{>0}$ then 9 is a factor of $10^{n+1} + 3 \cdot 10^n + 5$.
- (25) Prove that if $n \in \mathbb{Z}_{>0}$ then 4 is a factor of $5^n 1$.
- (26) Prove that if $n \in \mathbb{Z}_{>0}$ then x y is a factor of $x^n y^n$.
- (27) Let D be a diagonal matrix, $D = \text{diag}(\lambda_1, \dots, \lambda_s)$, where $D_{ii} = \lambda_i$, $D_{ij} = 0$, for $i \neq j$.

Prove, by induction that, for each positive integer n,

$$D^n = \operatorname{diag}(\lambda_1^n, \ldots, \lambda_s^n).$$

(28) Let A be a matrix such that $A = PDP^{-1}$, where D is diagonal. Prove, by induction, that for each positive integer n,

$$A^n = PD^n P^{-1}.$$

3. Orders on \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C}

- (1) Define the order \geq on $\mathbb{Z}_{>0}$.
- (2) Define the order \geq on $\mathbb{Z}_{\geq 0}$.
- (3) Define the order \geq on \mathbb{Z} .
- (4) Define the order \geq on \mathbb{Q} .
- (5) Show that $\frac{a}{b} \le \frac{c}{d}$ if and only if $abd^2 \le cdb^2$.
- (6) Define the order \geq on \mathbb{R} .
- (7) Show that there is no order \geq on \mathbb{C} such that \mathbb{C} is a totally ordered field.
- (8) Show that if $x, y, z \in \mathbb{R}$ and $x \le y$ and $y \le z$ then $x \le z$.
- (9) Show that if $x, y \in \mathbb{R}$ and $x \le y$ and $y \le x$ then x = y.
- (10) Show that if $x, y, z \in \mathbb{R}$ and $x \le y$ then $x + z \le y + z$.
- (11) Show that if $x, y \in \mathbb{R}$ and $x \ge 0$ and $y \ge 0$ then $xy \ge 0$.
- (12) Show that if $x \in \mathbb{R}$ and $x \neq 0$ then $x^2 > 0$.
- (13) Show that if $x, y \in \mathbb{R}$ and 0 < x < y then $y^{-1} < x^{-1}$.
- (14) (The Archimedean property of \mathbb{R}) Show that if $x, y \in \mathbb{R}$ and $x \in \mathbb{R}_{>0}$ then there exists $n \in \mathbb{Z}_{\geq 0}$ such that nx > y.
- (15) Show that the Archimedean property is equivalent to $\mathbb{Z}_{>0}$ is an unbounded subset of \mathbb{R} .
- (16) (\mathbb{Q} is dense in \mathbb{R}) Show that if $x, y \in \mathbb{R}$ and x < y then there exists $p \in \mathbb{Q}$ such that x .
- (17) ($\mathbb{R} \mathbb{Q}$ is dense \mathbb{R}) Show that if $x, y \in \mathbb{R}$ and x < y then there exists $p \in \mathbb{R} \mathbb{Q}$ such

that x .

- (18) If $x, y \in \mathbb{R}$ and x < y show that there exist infinitely many rational numbers between x and y as well as infinitely many irrational numbers.
- (19) Let $x \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{>0}$. Then there exists a unique $y \in \mathbb{R}_{>0}$ such that $y^n = x$.
- (20) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a) $A = \{p \in \mathbb{Q} \mid p^2 < 2\},$ (b) $B = \{p \in \mathbb{Q} \mid p^2 > 2\},$ (c) $E_1 = \{r \in \mathbb{Q} \mid r < 0\},$ (d) $E_2 = \{r \in \mathbb{Q} \mid r \le 0\},$

(21) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a)
$$S = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_{>0} \right\},$$

(b) $S = [0, 1),$
(c) $S = \mathbb{Z}_{>0},$
(d) $S = \{ x \in \mathbb{Q} \mid x \le 0 \text{ or } (x > 0 \text{ and } x^2 > 2) \},$

(22) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a)
$$S = \mathbb{Z}$$
,
(b) $S = [\sqrt{2}, 2]$,
(c) $S = (\sqrt{2}, 2)$,
(d) $S = \left\{ x \in \mathbb{R} \mid x = \frac{(-1)^n}{n}, n \in \mathbb{Z}_{>0} \right\}$,

(23) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a)
$$S = \left\{ \frac{1}{(|n|+1)^2} \middle| n \in \mathbb{Z} \right\},$$

(b) $S = \left\{ n + \frac{1}{n} \middle| n \in \mathbb{Z}_{>0} \right\},$
(c) $S = \{2^{-m} - 3^n \middle| m, n \in \mathbb{Z}_{\ge 0}\},$

(d) $S = \{x \in \mathbb{R} \mid x^3 - 4x < 0\},\$

(24) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a) $S = \{1 + x^2 \mid x \in \mathbb{R}\},\$ (b) $S = \{x \in \mathbb{R} \mid x^2 < 9\},\$ (c) $S = \{x \in \mathbb{R} \mid x^2 \le 7\},\$ (d) $S = \{x \in \mathbb{R} \mid |x + 2| \le 2 \text{ or } |x| > 1\}.\$

Are the supremum and infimum (if they exist) in the set S?

(25) For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a) $S = \{x \in \mathbb{R} \mid |2x + 1| < 5\},\$ (b) $S = \{x \in \mathbb{R} \mid |x - 2| < 3 \text{ and } |x + 1| < 1\},\$ (c) $S = \{x \in \mathbb{R} \mid x \in \mathbb{Q} \text{ and } x^2 < 7\},\$ (d) $S = \{x \in \mathbb{R} \mid |x + 2| \le 2 \text{ or } |x| > 1\}.\$

Are the supremum and infimum (if they exist) in the set S?

(26) Find an upper bound for the function
$$f(x) = \frac{2x^2 + 1}{x + 3}$$
 for $x \in \mathbb{R}$ and $|x| < 1$

(27) Find an upper bound for the function $f(x) = \frac{x^3 + 3x + 1}{10 - x^2}$ for $x \in \mathbb{R}$ and |x + 1| < 2.

- (28) Let S be a nonempty subset of \mathbb{R} . Show that $x = \sup S$ if and only if
 - (a) x is an upper bound of S, and
 - (b) for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $y \in S$ such that $x \varepsilon < y \le x$.
- (29) State and prove a characterization of $\inf S$ analogous to the characterization of $\sup S$ in the previous problem.
- (30) Let $c \in \mathbb{R}$ and let S be a subset of \mathbb{R} . Show that if S is bounded then $c + S = \{c + s \mid s \in \mathbb{R}\}$ is bounded.
- (31) Let $c \in \mathbb{R}$ and let S be a subset of \mathbb{R} . Show that if S is bounded then $cS = \{cs \mid s \in \mathbb{R}\}$ is bounded.
- (32) Let $c \in \mathbb{R}$ and let S be a subset of \mathbb{R} . Show that $\sup(c + S) = c + \sup S$.

- (33) Let $c \in \mathbb{R}_{\geq 0}$ and let S be a subset of \mathbb{R} . Show that $\sup(cS) = c \sup S$.
- (34) Let $c \in \mathbb{R}$ and let *S* be a subset of \mathbb{R} . Show that $\inf(c + S) = c + \inf S$.
- (35) Let $c \in \mathbb{R}_{\leq 0}$ and let S be a subset of \mathbb{R} . Show that $\inf(cS) = c \inf S$.

4. Cardinality

- (1) Define (a) cardinality, (b) finite, (c) infinite, (d) countable, and (e) uncountable.
- (2) Prove that $Card(\{a, b, c, d, e\}) = Card(\{1, 2, 3, 4, 5\}).$
- (3) Show that $\operatorname{Card}(\mathbb{Z}_{>0}) = \operatorname{Card}(\mathbb{Z}_{\geq 0})$.
- (4) Show that $\operatorname{Card}(\mathbb{Z}) = \operatorname{Card}(\mathbb{Z}_{\geq 0})$.
- (5) Show that $\operatorname{Card}(\mathbb{Z}_{>0}) = \operatorname{Card}(\mathbb{Z})$.
- (6) Show that $\operatorname{Card}(\{x \in \mathbb{Q} \mid 0 < x \le 1\}) = \operatorname{Card}(\mathbb{Z}_{>0}).$
- (7) Show that $\operatorname{Card}(\{x \in \mathbb{R} \mid 0 < x \le 1\}) \neq \operatorname{Card}(\mathbb{Z}_{>0}).$
- (8) Show that $\operatorname{Card}(\mathbb{Z}_{>0}) = \operatorname{Card}(\mathbb{Q})$.
- (9) Show that $\operatorname{Card}(\mathbb{Z}_{>0}) \neq \operatorname{Card}(\mathbb{R})$.
- (10) Show that $Card(\mathbb{C}) = Card(\mathbb{R})$.
- (11) Let S be a set. Show that Card(S) = Card(S).
- (12) Show that if Card(S) = Card(T) then Card(T) = Card(S).
- (13) Show that if Card(S) = Card(T) and Card(T) = Card(U) then Card(S) = Card(U).
- (14) Define Card(S) ≤ Card(T) if there exists an injective function f : S → T. Show that if Card(S) ≤ Card(T) and Card(T) ≤ Card(S) then Card(S) = Card(T).

5. Sets and functions

- (1) Let A, B and C be sets. Show that $(A \cup B) \cup C = A \cup (B \cup C)$.
- (2) Let A and B be sets. Show that $A \cup B = B \cup A$.
- (3) Let A be a set. Show that $A \cup \emptyset = A$.
- (4) Let A, B and C be sets. Show that $(A \cap B) \cap C = A \cap (B \cap C)$.

- (5) Let *A* and *B* be sets. Show that $A \cap B = B \cap A$.
- (6) Let A, B and C be sets. Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (7) Define (a) partial order, (b) total order, (c) partially ordered set, and (d) totally ordered set.
- (8) Define (a) maximum, (b) minimum, (c) upper bound, (d) lower bound, (e) bounded above, (f) bounded below.
- (9) Define (a) upper bound, (b) lower bound, (c) least upper bound, (d) greatest lower bound, (e) supremum and (f) infimum.
- (10) Let S be a set. Show that the set of subsets of S is partially ordered by inclusion.
- (11) Give an example of a partially ordered set S with more than one maximal element.
- (12) Let S be a partially ordered set and let E be a subset of S. Show that if a greatest lower bound of E exists in S then it is unique.
- (13) Show that \mathbb{Q} does not have the least upper bound property.
- (14) Show that \mathbb{R} has the least upper bound property.
- (15) Which of $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$, \mathbb{Z} , \mathbb{C} have the least upper bound property?
- (16) Let S, T and U be sets and let $f: S \to T$ and $g: T \to U$ be functions. Show that
 - a. if f and g are injective then $g \circ f$ is injective,
 - b. if f and g are surjective then $g \circ f$ is surjective, and
 - c. if f and g are bijective then $g \circ f$ is bijective.
- (17) Let $f: S \to T$ be a function and let $U \subseteq S$. The **image** of U under f is the subset of T given by

$$f(U) = \{ f(u) | u \in U \}.$$

Let $f: S \to T$ be a function. The **image** of U under f is the subset of T given by

$$\operatorname{im} U = \{ f(s) | s \in S \}.$$

Note that im f = f(S).

Let $f: S \to T$ be a function and let $V \subseteq T$. The **inverse image** of V under f is the subset of S given by

$$f^{-1}(V) = \{ s \in S \mid f(s) \in V \}.$$

Let $f: S \to T$ be a function and let $t \in T$. The **fiber** of f over t is the subset of S given by

$$f^{-1}(t) = \{ s \in S \mid f(s) = t \}.$$

Let $f: S \to T$ be a function. Show that the set $F = \{f^{-1}(t) | t \in T\}$ of fibers of the map f is a partition of S.

- (18) a. Let $f: S \to T$ be a function. Define $f': S \longrightarrow \inf f$ $s \longmapsto f(s)$. Show that the map f' is well defined and surjective.
 - b. Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) | t \in \text{im } f\} = \{f^{-1}(t) | t \in T\} \setminus \emptyset$ be the set of nonempty fibers of the map f. Define

$$\hat{f}: F \longrightarrow T \\ f^{-1}(t) \longmapsto t$$

Show that the map \hat{f} is well defined and injective.

c. Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) | t \in \text{im } f\} = \{f^{-1}(t) | t \in T\} \setminus \emptyset$ be the set of nonempty fibers of the map f. Define

$$\hat{f}': F \longrightarrow \operatorname{im} T \\ f^{-1}(t) \longmapsto t$$

Show that the map \hat{f}' is well defined and bijective.

(19) Let be a set. The **power set** of S, 2^S , is the set of all subsets of S.

Let S be a set and let $\{0, 1\}^S$ be the set of all functions $f : S \to \{0, 1\}$. Given a subset $T \subseteq S$ define a function $f_T : S \to \{0, 1\}$ by

$$f_T(s) = \begin{cases} 0, & \text{if } s \notin T, \\ 1, & \text{if } s \in T. \end{cases}$$

Show that the map

$$\phi: 2^{S} \longrightarrow \{0, 1\}^{S}$$
$$T \longmapsto f_{T}$$

is a bijection.

(20) Let $\circ : S \times S \to S$ be an associative operation on a set *S*. An **identity** for \circ is an element $e \in S$ such that $e \circ s = s \circ e = s$ for all $s \in S$.

Let *e* be an identity for an associative operation \circ on a set *S*. Let $s \in S$. A left inverse

for *s* is an element $t \in S$ such that $t \circ s = e$. A **right inverse** for *s* is an element $t' \in S$ such that $s \circ t' = e$. An **inverse** for *s* is an element $s^{-1} \in S$ such that $s^{-1} \circ s = s \circ s^{-1} = e$.

- a. Let \circ be an operation on a set *S*. Show that if *S* contains an identity for \circ then it is unique.
- b. Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. Show that if s has an inverse then it is then it is unique.
- (21) a. Let *S* and *T* be sets and let ι_S and ι_T be the identity maps on *S* and *T* respectively. Show that for any function $f: S \to T$,

 $\iota_T \circ f = f$, and $f \circ \iota_S = f$.

b. Let $f: S \to T$ be a function. Show that if an inverse function to f exists then it is unique. (Hint: The proof is very similar to the proof in Ex. 5b above.)

6. References

- [Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.
- [Ho] C. Hodgson, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.
- [Hu] B.D. Hughes, 620-158 Accelerated Mathematics 2 Lectures, 2009.
- [Wi] <u>P. Wightwick</u>, UMEP notes, 2010.