
Problem Set -- Sets, Orders and functions
620-295 Semester I 2010

Arun Ram
Department of Mathematics and Statistics

University of Melbourne
Parkville, VIC 3010 Australia

aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison

Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 2 May 2010

(1) Absolute value and inequalities
(2) Induction, or perhaps not
(3) Orders on ℤ, ℚ, ℝ, ℂ
(4) Cardinality
(5) Sets and functions

1. Absolute value and inequalities

   (1) Let x ∈ ℝ. Define ||x||.

   (2) Let x ∈ ℂ. Define ||x||.

   (3) Let x ∈ ℝn. Define ||x||.

   (4) Let x ∈ ℝ. Show that ||x|| = ||x + 0i||.

   (5) State and prove Lagrange's identity for ℝ.

   (6) State and prove the Schwarz identity for ℝ.

   (7) State and prove Lagrange's identity for ℝ2.

   (8) State and prove the Schwarz identity for ℝ2.

   (9) Let x ∈ ℝn. Show that || − x|| = ||x||.

   (10) Let x, y ∈ ℝ. Show that ||x + y|| ≤ ||x|| + ||y||.

   (11) Let x, y ∈ ℂ. Show that ||x + y|| ≤ ||x|| + ||y||.



   (12) Let x, y ∈ ℝn. Show that ||x + y|| ≤ ||x|| + ||y||.

   (13) Let x, y, z ∈ ℝn. Show that ||x + y + z || ≤ ||x|| + ||y|| + ||z ||.

   (14) Let x, y ∈ ℂ. Show that ||x + y||
2 + ||x − y||

2 = 2(||x||2 + ||y||
2). Is this identity true for x, y

∈ ℝn?

   (15) Let x, y ∈ ℂ. Show that ||x + y||
2 = ||x||2 + ||y||

2 + 2Re( x ȳ).

   (16) Let x, y ∈ ℝ. Show that ||x + y|| ≥ || ||x|| − ||y|| ||.

   (17) Let x, y ∈ ℝ. Show that ||x − y|| ≥ || ||x|| − ||y|| ||.

   (18) Let x, y, z ∈ ℝ. Show that ||x + y + z || ≥ || ||x|| − ||y|| − ||z || ||.

   (19) For x ∈ ℝ, give solutions to the following inequalities in terms of intervals:
(a) ||x|| > 3.
(b) ||1 + 2x|| ≥ 4.
(c) ||x + 2|| ≥ 5.

   (20) For x ∈ ℝ, rewrite each of the following inequalities in terms of intervals:
(a) ||x + 3|| > 1
(b) ||x − 2|| < 3
(c) ||x + 2|| ≤ 2 and ||x|| > 1
(d) ||x + 2|| ≤ 2 or ||x|| > 1

   (21) For x ∈ ℝ, give solutions to the following inequalities in terms of intervals:
(a) ||x − 2|| < 3 or ||x + 1|| < 1.
(b) ||x − 2|| < 3 and ||x + 1|| < 1.
(c) ||x − 5|| < ||x + 1||.

   (22)
Let a , b ∈ ℝ and let ε ∈ ℝ such that 0 < ε < ||b||. Show that 

|
|
||
a + ε
b + ε

|
|
|| ≤

||a || + ε
||b|| + ε

.

   (23)
Prove that if a1, a2, …, an ∈ ℝ then 

|

|
||||
∑

k = 1

n
ak

|

|
||||
≤ ∑

k = 1

n
||ak ||. Is this identity true for a1, a2, …

, an ∈ ℝn?

   (24)
Prove that if a1, a2, …, an ∈ ℝ then 

|

|
||||
∑

k = 1

n
ak

|

|
||||
≤ ||ap || − ∑

k = 1, k ≠ p

n
||ak ||. Is this identity true for

a1, a2, …, an ∈ ℝn?



   (25) Find the minimal N ∈ ℤ> 0 such that n < 2n for all n ≥ N .

   (26) Find the minimal N ∈ ℤ> 0 such that n ! > 2n for all n ≥ N .

   (27) Find the minimal N ∈ ℤ> 0 such that 2n > 2n3 for all n ≥ N .

   (28) (Bernoulli's inequality) Prove that if a ∈ ℝ and a > -1 then (1 + a)n ≥ 1 + na  for n ∈
ℤ> 0.

   (29) Prove that if x ∈ ℝ then 1 + x ≤ ex.

   (30) Prove that if x ∈ ℝ> 0 then log x ≥ x − 1
x .

   (31) Prove that if x, y ∈ ℝ≥ 0 and p ∈ ℝ with 0 < p < 1 then ( x + y)p ≤ x p + yp.

   (32) (Jensen's inequality) Let I  be an interval in ℝ and let f : I → ℝ be a convex function. If
x1, …, xn ∈ ℝ and t1, …, tn ∈ [0, 1] with t1 + ⋯ + tn = 1, then f ( t1 x1 + ⋯ + tn xn) ≤
t1 f ( x1) + ⋯ + tn f ( xn).

   (33) If x1, …, xn ∈ ℝ≥ 0 and t1, …, tn ∈ ℝ≥ 0 with t1 + ⋯ + tn = 1, then t1 x1 + ⋯ + tn xn ≥
x1

t1 ⋯xn
tn .

2. Induction, or perhaps not

   (1) Prove that if n ∈ ℤ>0 then 3 is a factor of n3 − n + 3.

   (2) Prove that if n ∈ ℤ>0 then 9 is a factor of 10n+1 + 3 ⋅ 10n + 5.

   (3) Prove that if n ∈ ℤ>0 then 4 is a factor of 5n − 1.

   (4) Prove that if n ∈ ℤ>0 then x − y is a factor of x n − yn.

   (5) Prove that if n ∈ ℤ>0 then 72n − 48n − 1 is divisible by 2304.

   (6) Prove that if n ∈ ℤ>0 then 2 + 4 + 6 + ⋯ + 2n = n( n + 1).

   (7) Prove that if n ∈ ℤ>0 then 1 + 4 + 7 + ⋯ + (3n − 2) = 1
2 n(3n − 1).

   (8) Prove that if n ∈ ℤ>0 then 2 + 7 + 12 + ⋯ + (5n − 3) = 1
2 n(5n − 1).

   (9) Prove that if n ∈ ℤ>0 then 1 + 2 ⋅ 2 + 3 ⋅ 22 + 4 ⋅ 23 + ⋯ + n2n−1 = 1 + ( n − 1)2n.

   (10) Prove that if n ∈ ℤ>0 then 12 + 22 + 32 + ⋯ + n2 = 1
6

n( n + 1)(2n + 1).



   (11) Prove that if n ∈ ℤ>0 then 
1

1 ⋅ 2
+

1
2 ⋅ 3

+
1

3 ⋅ 4
+ ⋯ +

1
n ⋅ ( n + 1)

=
n

n + 1
.

   (12) Prove that if n ∈ ℤ>0 then 3 + 32 + 33 + ⋯ + 3n = 3
2 (3n − 1).

   (13) Prove that if n ∈ ℤ>0 then (1 + 25 + ⋯ + n5) + (1 + 27 + ⋯ + n7) = 2(n(n+1)
2 )

4
.

   (14)
Prove that if n ∈ ℤ>0 then 1 + r + r2 + ⋯ + rn =

1 − rn

1 − r
.

   (15) Prove that if n ∈ ℤ>0 then ∑
k = 1

n
(2k − 1) = n2.

   (16) Prove that ∑
k = 1

n
k = 1

2 n( n + 1).

   (17) Prove that ∑
k = 1

n
(3k − 2) = 1

2 n(3n − 1).

   (18) Prove that ∑
k = 1

n
k 2 = 1

6
n( n + 1)(2n + 1).

   (19) Prove that ∑
k = 1

n
k 3 = 1

4 n2( n + 1)2.

   (20)
Prove that ∑

k = 1

n
k 3 = ( ∑

k = 1

n
k)

2

.

   (21) Prove that ∑
k = 1

n 1
k(k + 1)

=
n

n + 1
.

   (22) Define a sequence by a1 = 0, a2k = 1
2 a2k −1  and a2k +1 = 1

2 + a2k . Show that a2k = 1
2 −

(1
2)k

.

   (23) Prove that if n ∈ ℤ> 0 then 3 is a factor of n3 − n + 3.

   (24) Prove that if n ∈ ℤ> 0 then 9 is a factor of 10n+1 + 3⋅10n + 5.

   (25) Prove that if n ∈ ℤ> 0 then 4 is a factor of 5n − 1.

   (26) Prove that if n ∈ ℤ> 0 then x − y is a factor of x n − yn.

   (27) Let D  be a diagonal matrix,  D = diag( λ1, … λs),  where Dii = λi,  Di j = 0,  for i ≠ j.



Prove, by induction that, for each positive integer n,
Dn = diag( λ1

n, … , λs
n).

   (28) Let A be a matrix such that A = PDP −1, where D is diagonal. Prove, by induction, that
for each positive integer n,

An = PDnP −1.

3. Orders on ℤ, ℚ, ℝ,  and ℂ

   (1) Define the order ≥  on ℤ> 0.

   (2) Define the order ≥  on ℤ≥ 0.

   (3) Define the order ≥  on ℤ.

   (4) Define the order ≥  on ℚ.

   (5) Show that 
a
b

≤
c
d

 if and only if abd2 ≤ cdb2.

   (6) Define the order ≥  on ℝ.

   (7) Show that there is no order ≥  on ℂ such that ℂ is a totally ordered field.

   (8) Show that if x, y, z ∈ ℝ and x ≤ y and y ≤ z  then x ≤ z .

   (9) Show that if x, y ∈ ℝ and x ≤ y and y ≤ x then x = y.

   (10) Show that if x, y, z ∈ ℝ and x ≤ y then x + z ≤ y + z .

   (11) Show that if x, y ∈ ℝ and x ≥ 0 and y ≥ 0 then x y ≥ 0.

   (12) Show that if x ∈ ℝ and x ≠ 0 then x 2 > 0.

   (13) Show that if x, y ∈ ℝ and 0 < x < y then y−1 < x −1.

   (14) (The Archimedean property of ℝ) Show that if x, y ∈ ℝ and x ∈ ℝ> 0  then there exists
n ∈ ℤ≥ 0 such that nx > y.

   (15) Show that the Archimedean property is equivalent to ℤ> 0 is an unbounded subset of ℝ.

   (16) (ℚ is dense in ℝ) Show that if x, y ∈ ℝ and x < y then there exists p ∈ ℚ such that x
< p < y.

   (17) (ℝ − ℚ is dense ℝ) Show that if x, y ∈ ℝ and x < y then there exists p ∈ ℝ − ℚ such



that x < p < y.

   (18) If x, y ∈ ℝ and x < y show that there exist infinitely many rational numbers between x
and y as well as infinitely many irrational numbers.

   (19) Let x ∈ ℝ> 0 and n ∈ ℤ> 0. Then there exists a unique y ∈ ℝ> 0 such that yn = x.

   (20) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) A = {p ∈ ℚ || p2 < 2},
(b) B = {p ∈ ℚ || p2 > 2},
(c) E1 = {r ∈ ℚ || r < 0},
(d) E2 = {r ∈ ℚ || r ≤ 0},

   (21) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) S = {1
n

|
|
|||

n ∈ ℤ> 0},

(b) S = [0, 1),
(c) S = ℤ> 0,
(d) S = {x ∈ ℚ || x ≤ 0  or  ( x > 0  and  x 2 > 2)},

   (22) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) S = ℤ,
(b) S = [ 2√ , 2],
(c) S = ( 2√ , 2),

(d) S = {x ∈ ℝ
|

|
||| x =

(−1)n

n
,  n ∈ ℤ> 0},

   (23) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) S = { 1

(||n|| + 1)2

|

|

|||||
n ∈ ℤ},

(b) S = {n +
1
n

|
|
|||

n ∈ ℤ> 0},

(c) S = {2−m − 3n || m, n ∈ ℤ≥ 0},



(d) S = {x ∈ ℝ || x 3 − 4x < 0},

   (24) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) S = {1 + x 2 || x ∈ ℝ},
(b) S = {x ∈ ℝ || x 2 < 9},
(c) S = {x ∈ ℝ || x 2 ≤ 7},
(d) S = {x ∈ ℝ || ||x + 2|| ≤ 2 or ||x|| > 1}.

Are the supremum and infimum (if they exist) in the set S?

   (25) For each of  the following subsets  of  ℝ  find the maximum, the minimum, an upper
bound, a lower bound, the supremum, and the infimum:

(a) S = {x ∈ ℝ || ||2x + 1|| < 5},
(b) S = {x ∈ ℝ || ||x − 2|| < 3 and ||x + 1|| < 1},
(c) S = {x ∈ ℝ || x ∈ ℚ and x 2 < 7},
(d) S = {x ∈ ℝ || ||x + 2|| ≤ 2 or ||x|| > 1}.

Are the supremum and infimum (if they exist) in the set S?

   (26)
Find an upper bound for the function f ( x) =

2x 2 + 1
x + 3

 for x ∈ ℝ and ||x|| < 1.

   (27)
Find an upper bound for the function f ( x) =

x 3 + 3x + 1
10 − x 2

 for x ∈ ℝ and ||x + 1|| < 2.

   (28) Let S be a nonempty subset of ℝ. Show that x = sup S if and only if

(a) x is an upper bound of S, and
(b) for every ε ∈ ℝ> 0 there exists y ∈ S such that x − ε < y ≤ x.

   (29) State and prove a characterization of inf S analogous to the characterization of sup S in
the previous problem.

   (30) Let c ∈ ℝ and let S be a subset of ℝ. Show that if S is bounded then c + S = {c + s || s
∈ ℝ} is bounded.

   (31) Let c ∈ ℝ and let S be a subset of ℝ. Show that if S is bounded then cS = {cs || s ∈ ℝ} is
bounded.

   (32) Let c ∈ ℝ and let S be a subset of ℝ. Show that sup(c + S) = c + sup S.



   (33) Let c ∈ ℝ≥ 0 and let S be a subset of ℝ. Show that sup(cS) = c sup S.

   (34) Let c ∈ ℝ and let S be a subset of ℝ. Show that inf(c + S) = c + inf S.

   (35) Let c ∈ ℝ≤ 0 and let S be a subset of ℝ. Show that inf(cS) = c inf S.

4. Cardinality

   (1) Define (a) cardinality, (b) finite, (c) infinite, (d) countable, and (e) uncountable.

   (2) Prove that Card( a b c d e{ }, , , , ) = Card( 1 2 3 4 5{ }, , , , ).

   (3) Show that Card(ℤ>0) = Card(ℤ≥0).

   (4) Show that Card(ℤ) = Card(ℤ≥0).

   (5) Show that Card(ℤ>0) = Card(ℤ).

   (6) Show that Card({x ∈ ℚ || 0 < x ≤ 1}) = Card(ℤ>0).

   (7) Show that Card({x ∈ ℝ || 0 < x ≤ 1}) ≠ Card(ℤ>0).

   (8) Show that Card(ℤ>0) = Card(ℚ).

   (9) Show that Card(ℤ>0) ≠ Card(ℝ).

   (10) Show that Card(ℂ) = Card(ℝ).

   (11) Let S be a set. Show that Card(S) = Card(S).

   (12) Show that if Card(S) = Card(T ) then Card(T ) = Card(S).

   (13) Show that if Card(S) = Card(T ) and Card(T ) = Card(U) then Card(S) = Card(U).

   (14) Define Card(S) ≤ Card(T ) if there exists an injective function f : S → T . Show that if
Card(S) ≤ Card(T ) and Card(T ) ≤ Card(S) then Card(S) = Card(T ).

5. Sets and functions

   (1) Let A, B and C  be sets. Show that A∪B( )∪C = A∪ B∪C( ).

   (2) Let A and B be sets. Show that A∪B = B∪A.

   (3) Let A be a set. Show that A∪∅ = A.

   (4) Let A, B and C  be sets. Show that A∩B( )∩C = A∩ B∩C( ).



   (5) Let A and B be sets. Show that A∩B = B∩A.

   (6) Let A, B and C  be sets. Show that A∩ B∪C( ) = A∩B( )∪ A∩C( ).

   (7) Define (a) partial order, (b) total order, (c) partially ordered set, and (d) totally ordered
set.

   (8) Define (a) maximum, (b) minimum, (c) upper bound, (d) lower bound, (e) bounded
above, (f) bounded below.

   (9) Define (a)  upper  bound,  (b)  lower  bound,  (c)  least  upper  bound,  (d)  greatest  lower
bound, (e) supremum and (f) infimum.

   (10) Let S be a set. Show that the set of subsets of S is partially ordered by inclusion.

   (11) Give an example of a partially ordered set S with more than one maximal element.

   (12) Let S be a partially ordered set and let E  be a subset of S. Show that if a greatest lower
bound of E exists in S then it is unique.

   (13) Show that ℚ does not have the least upper bound property.

   (14) Show that ℝ has the least upper bound property.

   (15) Which of ℤ> 0, ℤ≥ 0, ℤ, ℂ have the least upper bound property?

   (16) Let S, T  and U be sets and let f : S → T  and g : T → U be functions. Show that

if f  and g are injective then g ∘ f  is injective,a.
if f  and g are surjective then g ∘ f  is surjective, andb.
if f  and g are bijective then g ∘ f  is bijective.c.

   (17) Let f : S → T  be a function and let U ⊆ S. The image of U under f  is the subset of T
given by

f U( ) = f u( )| u ∈ U{ }.

Let f : S → T  be a function. The image of U under f  is the subset of T  given by
im U = f s( )| s ∈ S{ }.

Note that im f = f S( ).

Let f : S → T  be a function and let V ⊆ T .  The inverse image of V  under f  is the
subset of S given by

f -1 V( ) = s ∈ S | f s( ) ∈ V{ }.

Let f : S → T  be a function and let t ∈ T . The fiber of f  over t is the subset of S given
by



f -1 t( ) = s ∈ S | f s( ) = t{ }.

Let f : S → T  be a function. Show that the set F = f -1 t( )| t ∈ T{ } of fibers of the map
f  is a partition of S.

   (18) Let f : S → T  be a function. Define
f ′ : S ⟶ im f

s ⟼ f s( ).
Show that the map f ′ is well defined and surjective.

a.

Let f : S → T  be a function and let F = f -1 t( )| t ∈ im f{ } = f -1 t( )| t ∈ T{ }\∅ be
the set of nonempty fibers of the map f . Define

f^ : F ⟶ T

f -1 t( ) ⟼ t
.

Show that the map f^ is well defined and injective.

b.

Let f : S → T  be a function and let F = f -1 t( )| t ∈ im f{ } = f -1 t( )| t ∈ T{ }\∅ be
the set of nonempty fibers of the map f . Define

f^′ : F ⟶ im T

f -1 t( ) ⟼ t
.

Show that the map f^′ is well defined and bijective.

c.

   (19) Let  be a set. The power set of S, 2S, is the set of all subsets of S.

Let S be a set and let 0 1{ }, S  be the set of all functions f : S → 0 1{ }, . Given a subset
T ⊆ S define a function fT : S → 0 1{ },  by

fT s( ) =
0, if s ∉ T ,

1, if s ∈ T .

⎧
⎨
⎩
⎪
⎪

Show that the map
ϕ : 2S ⟶ 0 1{ }, S

T ⟼ fT
is a bijection.

   (20) Let ∘ : S×S → S be an associative operation on a set S. An identity for ∘  is an element
e ∈ S such that e ∘s = s ∘e = s for all s ∈ S.

Let e be an identity for an associative operation ∘  on a set S. Let s ∈ S. A left inverse



for s  is an element t ∈ S such that t ∘s = e. A right inverse for s  is an element t′ ∈ S
such that s ∘ t′ = e. An inverse for s is an element s -1 ∈ S such that s -1 ∘s = s ∘s -1 = e.

Let ∘  be an operation on a set S. Show that if S contains an identity for ∘  then it is
unique.

a.

Let e be an identity for an associative operation ∘  on a set S. Let s ∈ S. Show that
if s has an inverse then it is then it is unique.

b.

   (21) Let S and T  be sets and let ιS  and ιT  be the identity maps on S and T  respectively.
Show that for any function f : S → T ,

ιT ∘ f = f , and

f ∘ ιS = f .

a.

Let f : S → T  be a function. Show that if an inverse function to f  exists then it is
unique. (Hint: The proof is very similar to the proof in Ex. 5b above.)

b.
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