Problem Set -- Topology 620-295 Semester I 2010

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 15 May 2010

(1) Topology(2) Definitions(3) Examples

1. Topology

- (1) Define topology and topological space.
- (2) Let X be a set with 2 points. Find all topologies on X.
- (3) Let X be a set with 3 points. Find all topologies on X.
- (4) Define open, closed, connected and compact sets.
- (5) Define complement, open cover, subcover and finite subcover.
- (6) Let X and Y be topological spaces. Define continuous function $f: X \to Y$.
- (7) Let X and Y be topological spaces. Let $f : X \to Y$ be a continuous function and let E be a connected subset of X. Show that f(E) is connected.
- (8) Let X and Y be topological spaces. Let $f : X \to Y$ be a continuous function and let E be a compact subset of X. Show that f(E) is compact.
- (9) Define neighborhood of a point p, interior point of E, and close point to E.
- (10) Let X be a topological space and let E be a subset of X. Define the interior and closure of E.

- (11) Let X be a topological space and let E be a subset of X. Prove that E° is the set of interior points of E.
- (12) Let X be a topological space and let E be a subset of X. Prove that \overline{E} is the set of close points of E.
- (13) Let X be a topological space and let E be a subset of X. Prove that E is open if and only if $E = E^{\circ}$.
- (14) Let X be a topological space and let E be a subset of X. Prove that E is closed if and only if $E = \overline{E}$.
- (15) Define the standard topology on a metric space.
- (16) Let X be a topological space. Define Hausdorff.
- (17) Let X be a Hausdorff topological space. Let E be a subset of X. Show that if E is compact then E is closed. Give an example to show that the converse does not hold.
- (18) Let X be a metric space. Show that X is Hausdorff.
- (19) Let X be a metric space. Let E be a subset of X. Show that if E is compact then E is closed and bounded. Give an example to show that the converse does not hold.
- (20) Let *E* be a subset of \mathbb{R}^n (with the standard topology). Show that *E* is compact if and only if *E* is closed and bounded.
- (21) Prove that the connected sets in \mathbb{R} are the intervals.
- (22) Prove that if E is a connected compact set in \mathbb{R} then there exist $m, M \in \mathbb{R}$ such that E = [m, M].
- (23) Define a topology on a partially ordered set X. Are the connected sets in X only the intervals?
- (24) Show that the set $[1, 2]_{\mathbb{Q}} = \{x \in \mathbb{Q} \mid 1 \le x \le 2\}$ is not a connected subset of \mathbb{Q} .
- (25) Show that the set $[1, 2]_{\mathbb{R}} = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$ is a connected subset of \mathbb{R} .
- (26) Give an example of a subset of \mathbb{R} that is both open and closed.
- (27) Give an example of a subset of \mathbb{R} that is not open and not closed.
- (28) Give an example of a subset of \mathbb{R} that is open and not closed.
- (29) Give an example of a subset of \mathbb{R} that is closed and not open.

2. Definitions

- (1) Define set, union, intersection and product (of sets).
- (2) Define set, subset, and equal sets.
- (3) Define function, injective, surjective and bijective.
- (4) Define cardinality, finite, infinite, countable and uncountable.
- (5) Define function, composition of functions, equal functions, identity function.
- (6) Define the positive integers, addition, multiplication and the order on positive integers.
- (7) Let S be a set. Define (a) relation on S and (b) operation on S.
- (8) Define field.
- (9) Let $z \in \mathbb{C}$. Define the conjugate of z.
- (10) Define the absolute value on \mathbb{R} .
- (11) Define the absolute value on \mathbb{C} .
- (12) Define the absolute value on \mathbb{R}^n .
- (13) Define partial order and total order.
- (14) Define ordered field.
- (15) Define e^x and $\log x$.
- (16) Define $\sin x$, $\cos x$, $\tan x$, $\sec x$, $\csc x$, and $\cot x$.
- (17) Define $\sinh x$, $\cosh x$, $\tanh x$, $\operatorname{sech} x$, $\operatorname{csch} x$, and $\coth x$.
- (18) Define $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arcsec} x$, $\operatorname{arccsc} x$, and $\operatorname{arccot} x$.
- (19) Define $\operatorname{arcsinh} x$, $\operatorname{arccosh} x$, $\operatorname{arctanh} x$, $\operatorname{arcsech} x$, $\operatorname{arccsch} x$, and $\operatorname{arccoth} x$.
- (20) Define $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$ and \mathbb{Z} .
- (21) Define $\mathbb{Q}[x]$ and $\mathbb{Q}[[x]]$.
- (22) Define the addition and the multiplication on $\mathbb{Q}[x]$ and $\mathbb{Q}[[x]]$.
- (23) Define \mathbb{Q} , $\mathbb{Q}(x)$ and $\mathbb{Q}((x))$.
- (24) Define the addition and the multiplication on \mathbb{Q} , $\mathbb{Q}(x)$ and $\mathbb{Q}((x))$.
- (25) Define \mathbb{R} .

- (26) Define \mathbb{R}^n .
- (27) Define the addition, the multiplication and the order on \mathbb{R} .
- (28) Define the absolute value, the distance and the topology on \mathbb{R} .
- (29) Define \mathbb{C} .
- (30) Define the addition, the multiplication, the absolute value, the distance and the topology on \mathbb{C} .
- (31) Define sequence, bounded, increasing, decreasing and monotone.
- (32) Define sequence, convergent, divergent, Cauchy and contractive.
- (33) Define series, convergent series, and divergent series.
- (34) Define series, absolutely convergent series, and conditionally convergent series.
- (35) Define series, geometric series, *p*-harmonic series, and the Riemann zeta function.
- (36) Define sequence, $\sup a_n$, $\inf a_n$, $\limsup a_n$, and $\liminf a_n$.
- (37) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Define what it means for f to be continuous.
- (38) Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a function. Let $p \in [a, b]$. Define what it means for f to be continuous at p.
- (39) Let X and Y be metric spaces and let $f: X \to Y$ be a function. Define what it means for f to be continuous.
- (40) Let X and Y be metric spaces and let $f : X \to Y$ be a function. Let $p \in X$. Define what it means for f to be continuous at p.
- (41) Let (a_n) be a sequence in \mathbb{R} . Define $\lim_{n \to \infty} a_n$.
- (42) Let X be a metric space and let (a_n) be a sequence in X. Define $\lim_{n \to \infty} a_n$.
- (43) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Define $\lim_{x \to a} f(x)$.
- (44) Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a function. Let $p \in [a, b]$. Define $\lim_{x \to p} f(x)$.
- (45) Let X and Y be metric spaces and let $f: X \to Y$ be a function. Let $p \in X$. Define $\lim_{x \to p} f(x)$.
- (46) Define $\int_a^{\infty} f(x) dx$.
- (47) Define $\int_{-\infty}^{b} f(x) dx$.

- (48) Define $\int_{a}^{b} f(x) dx$ when the integral is improper.
- (49) Define improper integrals.
- (50) Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a function. Let $c \in [a, b]$. Define f'(c).
- (51) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Define what it means for f to be differentiable.
- (52) Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a function. Let $p \in [a, b]$. Define what it means for f to be differentiable at p.
- (53) Define series expansion of f(x) at x = a.
- (54) Define Taylor approximation of f(x) at x = a of order n.
- (55) Define Lagrange's remainder.
- (56) Define Riemann integral.
- (57) Define trapezoidal approximation.
- (58) Define Simpson approximation.

3. Examples

- (1) Define partial order Give an example of (a) a total order and (b) a partial order that is not a total order.
- (2) Give an example of (a) an ordered field and (b) a field that is not an ordered field.
- (3) Give an example of a sequence of rational numbers that is Cauchy but does not converge.
- (4) Give an example of a subset of Q that has an upper bound but does not have a least upper bound.
- (5) Give an example of an element of \mathbb{Q} that is not an element of \mathbb{R} .
- (6) Give an example of a sequence of real numbers such that $\sup a_n$, $\inf a_n$, $\limsup a_n$, and $\liminf a_n$ are all different.
- (7) Give an example of a series that is conditionally convergent but not absolutely convergent.