Problem Set -- Theorems 620-295 Semester I 2010

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au and

Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA ram@math.wisc.edu

Last updates: 18 May 2010

(1) Theorems

1. Theorems

- (1) Prove that if (a_n) is a sequence in \mathbb{C} and (a_n) converges then $\lim_{n \to \infty} a_n$ is unique.
- (2) Prove that if (a_n) is a sequence in \mathbb{C} and (a_n) converges then (a_n) is bounded.
- (3) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n + b_n = a + b$.
- (4) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n b_n = ab$.
- (5) Prove that if (a_n) and (b_n) are sequences in \mathbb{C} and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ and $b_n \neq 0$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.
- (6) Prove that if (a_n) , (b_n) and (c_n) are sequences in \mathbb{R} and $\lim_{n \to \infty} a_n = \ell$ and $\lim_{n \to \infty} c_n = \ell$ and $a_n \le b_n \le c_n$ for all $n \in \mathbb{Z}_{>0}$ then $\lim_{n \to \infty} b_n = \ell$.
- (7) Prove that if (a_n) is a sequence in \mathbb{R} and (a_n) is increasing and bounded above then (a_n) converges.
- (8) Prove that if (a_n) is a sequence in \mathbb{R} and (a_n) is not bounded then (a_n) diverges.

- (9) Prove that if (a_n) is a contractive sequence in \mathbb{R} then (a_n) is Cauchy. Give an example to show that the converse is not true.
- (10) Prove that if (a_n) is a Cauchy sequence in \mathbb{R} then (a_n) converges.
- (11) Give an example of a Cauchy sequence (a_n) in \mathbb{Q} that does not converge.
- (12) Let X be a metric space. Prove that if (a_n) is a convergent sequence in X then (a_n) is Cauchy.
- (13) Find a sequence a_n in \mathbb{R} such that if $r \in [0, 1]$ there is a subsequence of a_n which converges to r.
- (14) Let X be a metric space. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions and let $a \in X$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Show that $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$.
- (15) Let X be a metric space. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions and let $a \in X$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Show that if $c \in \mathbb{R}$ then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$,
- (16) Let X be a metric space. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions and let $a \in X$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Show that $\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right)\left(\lim_{x \to a} g(x)\right)$
- (17) Let X be a metric space. Let f: X → R and g: X → R be functions and let a ∈ X. Assume that lim f(x) and lim g(x) exist. Show that f is continuous at x = a if and only if lim f(x) = f(a).
- (18) Assume that $\lim_{x \to a} g(x) = l$ and $\lim_{y \to l} f(y)$ exists. Show that $\lim_{y \to l} f(y) = \lim_{x \to a} f(g(x))$.
- (19) Let a_n and b_n be sequences in \mathbb{R} . Assume that $\lim_{n \to \infty} a_n$ exists and $\lim_{n \to \infty} b_n$ exists. Show that if $a_n \le b_n$ then $\lim_{n \to \infty} a_n \le b_n$.
- (20) Let $x \in \mathbb{C}$. Show that

$$\lim_{n \to \infty} x^{n} = \begin{cases} 0, & \text{if } |x| < 1, \\ \text{diverges, } & \text{if } |x| > 1, \\ 1, & \text{if } x = 1, \\ \text{diverges, } & \text{if } |x| = 1 \text{ and } x \neq 1. \end{cases}$$

(21) Let $x \in \mathbb{C}$. Prove that

$$\lim_{n \to \infty} 1 + x + x^{2} + \dots + x^{n} = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \begin{cases} \frac{1}{1 - x}, & \text{if } |x| < 1, \\ \text{diverges, if } |x| \ge 1. \end{cases}$$

- (22) Let $k \in \mathbb{R}_{>0}$. Show that $\sum_{n=1}^{\infty} \frac{1}{n^k}$ converges if k > 1 and $\sum_{n=1}^{\infty} \frac{1}{n^k}$ diverges if $k \le 1$.
- (23) Prove that $\lim_{x \to 0} e^x = e^0$.
- (24) Let $a \in \mathbb{C}$. Prove that $\lim_{x \to a} e^x = e^a$.
- (25) Let $n \in \mathbb{Z}_{>0}$ and $a \in \mathbb{C}$. Show that the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(x) = x^n$ is continuous at x = a.
- (26) Let $a \in \mathbb{C}$. Show that the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(x) = e^x$ is continuous at x = a.
- (27) Let $r, s \in \mathbb{C}$. Assume $\sum_{n=0}^{\infty} a_n s^n$ converges. Show that if |r| < |s| then $\sum_{n=0}^{\infty} a_n |r|^n$ converges.
- (28) Let (a_n) be a sequence in \mathbb{C} . Show that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
- (29) Let (a_n) be a sequence in \mathbb{R} such that $a_n \in \mathbb{R}_{\geq 0}$, if $n \in \mathbb{Z}_{>0}$ then $a_n \geq a_{n+1}$, and $\lim_{n \to \infty} a_n = 0$. Show that $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.
- (30) Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ and let $\beta, \gamma \in \mathbb{R}$. Let $c \in [a, b]$ and assume that f'(c) and g'(c) exist. Prove that $(\beta f + \gamma g)'(c) = \beta f'(c) + \gamma g'(c)$.
- (31) Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ and let $c \in [a, b]$. Assume that f'(c) and g'(c) exist. Prove that (fg)'(c) = f'(c)g(c) + f(c)g'(c).
- (32) Let $f : [a, b] \to \mathbb{R}$ be given by f(x) = x and let $c \in [a, b]$. Prove that f'(c) = 1.
- (33) Let $f : [a, b] \to \mathbb{R}$ and let $c \in [a, b]$. Prove that if f'(c) exists then f is continuous at x = c.
- (34) Prove that $\exp'(x) = \exp(x)$.
- (35) Carefully state and prove the intermediate value theorem.
- (36) Carefully state and prove the max-min theorem.
- (37) Carefully state and prove Rolle's theorem.
- (38) Carefully state and prove the mean value theorem.
- (39) Carefully state and prove Taylor's theorem with Lagrange's remainder.
- (40) Carefully state and prove the fundamental theorem of calculus.
- (41) Carefully state the trapezoidal integral approximation and the bound on the error.
- (42) Carefully state Simpson's integral approximation and the bound on the error.
- (43) Prove that \mathbb{Q} is a field.

- (44) Prove that \mathbb{R} is a field.
- (45) Prove that \mathbb{C} is a field.
- (46) Prove that \mathbb{Q} is an ordered field.
- (47) Prove that \mathbb{R} is an ordered field.
- (48) Prove that \mathbb{C} is not an ordered field.
- (49) Carefully state and prove Lagrange's identity.
- (50) Carefully state and prove the Schwarz inequality.
- (51) Carefully state and prove the triangle inequality.
- (52) Prove that \mathbb{R} is a metric space.
- (53) Prove that \mathbb{R}^n is a metric space.
- (54) Prove that \mathbb{R} is a topological space.
- (55) Prove that \mathbb{R}^n is a topological space.
- (56) Let X be a metric space. Prove that X is a topological space.
- (57) Let $E \subseteq \mathbb{R}$. Show that *E* is connected if and only if *E* is an interval.
- (58) Let $E \subseteq \mathbb{R}$. Show that E is connected and compact if and only if E is a closed and bounded interval.
- (59) Let S be a set with a partial order and let E be a subset of S. Show that if $\sup E$ exists then it is unique.